Câu 23 trang 8 Sách bài tập Hình Học 11 nâng cao.Trong mặt phẳng tọa độ Oxy, cho đường thẳng d và đường tròn (C) lần lượt có phương trình. 23. Trang 8 Sách bài tập Hình Học 11 nâng cao. Trong mặt phẳng tọa độ Oxy, cho đường thẳng d và đường tròn (C) lần lượt có phương trình: \(\eqalign{ a) Viết phương trình ảnh của đường thẳng d qua phép đối xứng trục có trục đối xứng là Ox. b) Viết phương trình ảnh của dường tròn (C) qua phép đối xứng trục có trục đối xứng là Oy. c) Viết phương trình ảnh của đường tròn (C) qua phép đối xứng trục có trục là đường thẳng bx - ay = 0. Giải a) Phép đối xứng qua Ox biến điểm \(M\left( {x;y} \right)\) thành \(M'\left( {x';y'} \right)\) mà x = x’ và y = - y’. Nếu \(M\left( {x;y} \right)\) nằm trên d thì \(Ax + Bx + C = 0\) hay \(A'x - By' + C = 0\). Vậy \(M'\left( {x';y'} \right)\) thỏa mãn phương trình Ax - By + C = 0. Đó là phương trình ảnh của d qua phép đối xứng trục Ox. b) Phép đối xứng qua Oy biến điểm \(M\left( {x;y} \right)\) thành \(M'\left( {x';y'} \right)\) mà x = x’ và y = y’. Nếu \(M\left( {x;y} \right)\) nằm trên (C) thì: \(\eqalign{ Vậy \(M'\left( {x';y'} \right)\) thỏa mãn phương trình \({x^2} + {y^2} - 2ax + 2by + c = 0.\) Đó là phương trình ảnh của (C) qua phép đối xứng trục với trục là Oy. c) Đường tròn (C) có tâm \(I\left( { - a; - b} \right)\), rõ ràng tâm I nằm trên đường thẳng bx - ay = 0. Suy ra phép đối xứng qua đường thẳng đó biến (C) thành chính nó. Vậy ảnh của (C) có phương trình trùng với phương trình của (C). sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 3: Phép đối xứng trục
|
Gọi m là đường phân giác ngoài tại A của tam giác ABC. Chứng minh rằng với mọi điểm M trên m, chu vi của tam giác MBC không nhỏ hơn chu vi tam giác ABC.
Chứng minh rằng m chỉ cắt (E) tại điểm M duy nhất (đường thẳng m như thế được gọi là tiếp tuyến của (E) tại điểm M).
Chứng minh rằng m chỉ cắt (H) tại điểm M duy nhất.( Đường thẳng m như thế được gọi là tiếp tuyến của (H) tại điểm M).
Chứng minh rằng m chỉ cắt (P) tại điểm chung duy nhất M. (Đường thẳng m như thế được gọi là tiếp tuyến của (P) tại điểm M).