Câu 26 trang 119 Sách bài tập Hình học 11 Nâng caoGiải bài tập Câu 26 trang 119 Sách bài tập Hình học 11 Nâng cao Cho hình chóp S.ABCD có đáy là hình bình hành và SA = SC, SB = SD. Gọi O là giao điểm của AC và BD. a) Chứng minh rằng SO ⊥ mp(ABCD). b) Gọi d là giao tuyến của mp(SAB) và mp(SCD), d1 là giao tuyến của mp(SBC) và mp(SAD). Chứng minh rằng SO ⊥ mp(d, d1). Trả lời
a) Vì ABCD là hình bình hành và \(O = AC \cap B{\rm{D}}\) nên OA = OC và OB = OD. Mặt khác SA = SC nên SO ⊥ AC và SB = SD nên SO ⊥BD. Vậy SO ⊥ mp(ABCD) b) Vì AB // CD mà \(d = mp\left( {SAB} \right) \cap mp\left( {SC{\rm{D}}} \right)\) nên d //AB và d qua S. Tương tự d1 //AD và d1 qua S. Do \(SO \bot mp\left( {ABC{\rm{D}}} \right)\) nên \(SO \bot d,SO \bot {d_1}\) . Vậy \(SO \bot mp\left( {d,{d_1}} \right)\). Sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
|
Giải bài tập Câu 27 trang 119 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 28 trang 119 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 29 trang 119 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 30 trang 119 Sách bài tập Hình học 11 Nâng cao