Câu 29 trang 68 Sách Bài Tập (SBT) Toán 9 Tập 1Chứng minh rằng với mọi giá trị của m, họ đường thẳng xác định bởi (1) luôn đi qua một điểm cố định. Hãy xác định tọa độ của điểm đó. Cho hàm số \(y = mx + \left( {2m + 1} \right)\) (1) Với mỗi giá trị của \(m \in R\) , ta có một đường thẳng xác định bởi (1) . Như vậy, ta có một họ đường thẳng xác định bởi (1). Chứng minh rằng với mọi giá trị của m, họ đường thẳng xác định bởi (1) luôn đi qua một điểm cố định. Hãy xác định tọa độ của điểm đó. Gợi ý làm bài: Chứng minh họ đường thẳng \(y = mx + \left( {2m + 1} \right)\) (1) luôn đi qua một điểm cố định nào đó. Giả sử điểm \(A\left( {{x_0};{y_0}} \right)\) là điểm mà họ đường thẳng (1) đi qua với mọi m. Khi đó tọa độ điểm A nghiệm đúng phương trình hàm số (1). Với mọi m , ta có: \({y_0} = m{x_0} + \left( {2m + 1} \right) \Leftrightarrow \left( {{x_0} + 2} \right)m + \left( {1 - y} \right) = 0\) Vì phương trình nghiệm đúng với mọi giá trị của m nên tất cả các hệ số phải bằng 0. Suy ra: \(\eqalign{ Vậy A(-2;1) là điểm cố định mà họ đường thẳng \(y = mx + \left( {2m + 1} \right)\) luôn đi qua với mọi giá trị m. Sachbaitap.com
Xem lời giải SGK - Toán 9 - Xem ngay >> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
Xem thêm tại đây:
Bài 5. Hệ số góc của đường thẳng y = ax + b
|
Với những giá trị nào của k thì hàm số y = (-k + 9)x + 100 nghịch biến ?
Với những giá trị nào của m thì đồ thị của các hàm số y = 12x + (5 -m) và y = 3x + (3 + m) cắt nhau tại một điểm trên trục tung ?
Tìm giá trị của a để hai đường thẳng y = (a - 1)x + 2 và y = (3 - a)x +1 song song với nhau.
Với điều kiện nào của k và m thì hai đường thẳng sau sẽ trùng nhau ?