Câu 3.25 trang 89 sách bài tập Đại số và Giải tích 11 Nâng caoCho dãy số Cho dãy số \(({u_n})\) xác định bởi \({u_1} = 1\) và \({u_{n + 1}} = {u_n} + 7\) với mọi \(n \ge 1.\) a) Hãy tính \({u_2},{u_4}\) và \({u_6}.\) b) Chứng minh rằng \({u_n} = 7n - 6\) với mọi \(n \ge 1.\) Giải a) \(\eqalign{ b) Ta sẽ chứng minh \({u_n} = 7n - 6\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\) với mọi \(n \ge 1,\) bằng phương pháp quy nạp. Với \(n = 1,\) ta có \({u_1} = 1 = 7.1 - 6.\) Như vậy, (1) đúng khi \(n = 1.\) Giả sử đã có (1) đúng khi \(n = k,k \in N^*,\) ta sẽ chứng minh nó cũng đúng khi \(n = k = 1.\) Thật vậy, từ hệ thức xác định dãy số \(({u_n})\) và giả thiết quy nạp ta có \({u_{k + 1}} = {u_k} + 7 = 7.k- 6 + 7 = 7.(k + 1) - 6\) Từ các chứng minh trên suy ra ta có (1) đúng với mọi \(n \ge 1.\)
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 2. Dãy số
|
Trong các dãy số sau, dãy số nào là cấp số cộng? Hãy xác định công sai của cấp số cộng đó.