Câu 34 trang 84 Sách bài tập (SBT) Toán 8 tập 1Gọi M là trung điểm của BC, I là giao điểm của BD và AM. Chứng minh rằng AI = IM. Cho tam giác ABC, điểm D thuộc cạnh AC sao cho \(AD = {1 \over 2}DC\). Gọi M là trung điểm của BC, I là giao điểm của BD và AM. Chứng minh rằng AI = IM. Giải:
Gọi E là trung điểm của DC Trong ∆ BDC ta có: M là trung điểm của BC (gt) E là trung điểm của CD (gt) Nên ME là đường trung bình của ∆ BCD ⇒ ME // BD( tính chất đường trung bình của tam giác) Suy ra: DI // ME \(AD = {1 \over 2}DC\) (gt) \(DE = {1 \over 2}DC\) (theo cách vẽ) ⇒AD = DE DI // ME Nên AI = IM (tính chất đường trung bình của tam giác) Sachbaitap.com
Xem lời giải SGK - Toán 8 - Xem ngay >> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 4. Đường trung bình của tam giác, của hình thang
|
Hình thang ABCD có đáy AB, CD. Gọi E, F, I theo thứ tự là trung điểm của AD, BC, AC. Chứng minh rằng ba điểm E, I, F thẳng hàng.
Cho tứ giác ABCD. Gọi E, F, I theo thứ tự là trung điểm của AD, BC, AC.
Cho hình thang ABCD (AB // CD), M là trung điểm của AD, N là trung điểm của BC. Gọi I, K theo thứ tự là giao điểm của MN với BD, AC. Cho biết AB = 6cm, CD = 14 cm. Tính các độ dài MI, IK, KN.
Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi I, K theo thứ tự là trung điểm của GB, GC. Chứng minh rằng DE // IK, DE = IK.