Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 3.44 trang 92 sách bài tập Đại số và Giải tích 11 Nâng cao

Cho cấp số cộng tăng

Cho cấp số cộng tăng \(({u_n})\) có \(u_1^3 + u_{15}^3 = 302094\) và tổng 15 số hạng đầu tiên bằng 585. Hãy tìm số hạng đầu tiên và công sai của cấp số cộng đó.

Giải

Kí hiệu d là công sai của \({S_{15}}\) là tổng 15 số hạng đầu tiên của cấp số cộng đã cho. Vì \(({u_n})\) là cấp số cộng tăng nên \(d > 0.\)

Ta có

\(585 = {S_{15}} = {{15.({u_1} + {u_{15}})} \over 2} \)

\(\Leftrightarrow {u_1} + {u_{15}} = 78 \Leftrightarrow 2{u_1} + 14d = 78\)

                                                                                \( \Leftrightarrow {u_1} + 7d = 39\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\)

\(\eqalign{
& u_1^3 + u_{15}^3 = 302094\cr& \Leftrightarrow {\left( {{u_1} + {u_{15}}} \right)^3} - 3{u_1}{u_{15}}.\left( {{u_1} + {u_{15}}} \right) = 302094 \cr
& \Leftrightarrow {78^3} - 3{u_1}.\left( {{u_1} + 14d} \right).78 = 302094 \cr&\Leftrightarrow {u_1}.\left( {{u_1} + 14d} \right) = 737\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \cr} \)

Từ (1) và (2) ta được hệ

\(\left\{ \matrix{
{u_1} + 7d = 39 \hfill \cr
{u_1}.\left( {{u_1} + 14d} \right) = 737 \hfill \cr} \right.\)

Giải hệ trên, với lưu ý \(d > 0\), ta được \({u_1} = 11\) và \(d = 4\)

sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: Bài 3. Cấp số cộng