Câu 3.69 trang 96 sách bài tập Đại số và Giải tích 11 Nâng caoCho dãy số Cho dãy số \(({u_n})\) với \({u_n} = \cos (3n + 1){\pi \over 6}.\) a) Chứng minh rằng \({u_n} = {u_{n + 4}}\) với mọi \(n \ge 1.\) b) Hãy tính tổng 27 số hạng đầu tiên của dãy số đã cho. Giải a) Ta có \( {u_{n + 4}} = \cos \left( {3\left( {n + 4} \right) + 1} \right){\pi \over 6} \) \(= \cos \left( {\left( {3n + 1} \right){\pi \over 6} + 2\pi } \right) = \cos \left( {3n + 1} \right){\pi \over 6} = {u_n}\) \(\forall n \ge 1.\) b) Kí hiệu S là tổng 27 số hạng đầu tiên của dãy số \(({u_n})\). Từ kết quả phần a) , ta được \(S = 6\left( {{u_1} + {u_2} + {u_3} + {u_4}} \right) + {u_1} + {u_2} + {u_3}.\,\,\,\,\,\,\,\,\,\,\,\,(1)\) Bằng cách tính trực tiếp, ta có: \({u_1} = - {1 \over 2},{u_2} = - {{\sqrt 3 } \over 2},{u_3} = {1 \over 2},{u_4} = {{\sqrt 3 } \over 2}.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\) Từ (1) và (2) , ta được : \(S = - {{\sqrt 3 } \over 2}\) Sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Ôn tập chương III - Dãy số, cấp số cộng và cấp số nhân
|