Câu 3.69 trang 96 sách bài tập Đại số và Giải tích 11 Nâng caoCho dãy số Cho dãy số \(({u_n})\) với \({u_n} = \cos (3n + 1){\pi \over 6}.\) a) Chứng minh rằng \({u_n} = {u_{n + 4}}\) với mọi \(n \ge 1.\) b) Hãy tính tổng 27 số hạng đầu tiên của dãy số đã cho. Giải a) Ta có \( {u_{n + 4}} = \cos \left( {3\left( {n + 4} \right) + 1} \right){\pi \over 6} \) Quảng cáo \(= \cos \left( {\left( {3n + 1} \right){\pi \over 6} + 2\pi } \right) = \cos \left( {3n + 1} \right){\pi \over 6} = {u_n}\) \(\forall n \ge 1.\) b) Kí hiệu S là tổng 27 số hạng đầu tiên của dãy số \(({u_n})\). Từ kết quả phần a) , ta được \(S = 6\left( {{u_1} + {u_2} + {u_3} + {u_4}} \right) + {u_1} + {u_2} + {u_3}.\,\,\,\,\,\,\,\,\,\,\,\,(1)\) Bằng cách tính trực tiếp, ta có: \({u_1} = - {1 \over 2},{u_2} = - {{\sqrt 3 } \over 2},{u_3} = {1 \over 2},{u_4} = {{\sqrt 3 } \over 2}.\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\) Từ (1) và (2) , ta được : \(S = - {{\sqrt 3 } \over 2}\) Sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Ôn tập chương III - Dãy số, cấp số cộng và cấp số nhân
|