Câu 4.10 trang 178 sách bài tập Giải tích 12 Nâng caoXác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn: Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn: \(\left| {{z \over {z - i}}} \right| = k\) (k là số thực dương cho trước) Giải Viết \(z = x + yi\left( {x,y \in R} \right)\) thì \(\left| {{z \over {z - i}}} \right| = \left| {{{x + yi} \over {x + \left( {y - 1} \right)i}}} \right| = k \Leftrightarrow {{{x^2} + {y^2}} \over {{x^2} + {{\left( {y - 1} \right)}^2}}} = {k^2}\) - Nếu \(k = 1\) thì đẳng thức cuối này tương đương với \(y = {1 \over 2}.\). Tập hợp cần tìm là đường thẳng \(y = {1 \over 2}\) (đường trung trực của đoạn thẳng OI, I biểu diễn số i) - Nếu \(k \ne 1\) thì đẳng thức cuối đó tương đương với \({x^2} + {y^2} - 2{{{k^2}} \over {{k^2} - 1}}y + {{{k^2}} \over {{k^2} - 1}} = 0\) Tức là tương đương với \({x^2} + {\left( {y - {{{k^2}} \over {{k^2} - 1}}} \right)^2} = {{{k^2}} \over {{{\left( {{k^2} - 1} \right)}^2}}}\) Tập hợp cần tìm là đường tròn có tâm là điểm biểu diễn số \({{{k^2}} \over {{k^2} - 1}}i,\) có bán kính bằng \(\left| {{{{k^2}} \over {{k^2} - 1}}} \right|\) Sachbaitap.com
Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 1. Số phức
|
Hỏi khi số thức a thay đổi tùy ý thì các điểm của mặt phẳng phức biểu diễn các căn bậc hai của a + I vạch nên đường nào ?