Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 4.10 trang 178 sách bài tập Giải tích 12 Nâng cao

Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn:

Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn:

                            \(\left| {{z \over {z - i}}} \right| = k\)

(k là số thực dương cho trước)

Giải

Viết \(z = x + yi\left( {x,y \in R} \right)\) thì

\(\left| {{z \over {z - i}}} \right| = \left| {{{x + yi} \over {x + \left( {y - 1} \right)i}}} \right| = k \Leftrightarrow {{{x^2} + {y^2}} \over {{x^2} + {{\left( {y - 1} \right)}^2}}} = {k^2}\)

- Nếu \(k = 1\)  thì đẳng thức cuối này tương đương với \(y = {1 \over 2}.\). Tập hợp cần tìm là đường thẳng \(y = {1 \over 2}\) (đường trung trực của đoạn thẳng OI, I biểu diễn số i)

- Nếu \(k \ne 1\) thì đẳng thức cuối đó tương đương với

\({x^2} + {y^2} - 2{{{k^2}} \over {{k^2} - 1}}y + {{{k^2}} \over {{k^2} - 1}} = 0\)

Tức là tương đương với

\({x^2} + {\left( {y - {{{k^2}} \over {{k^2} - 1}}} \right)^2} = {{{k^2}} \over {{{\left( {{k^2} - 1} \right)}^2}}}\)

Tập hợp cần tìm là đường tròn có tâm là điểm biểu diễn số \({{{k^2}} \over {{k^2} - 1}}i,\) có bán kính bằng \(\left| {{{{k^2}} \over {{k^2} - 1}}} \right|\)

Sachbaitap.com

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Xem thêm tại đây: Bài 1. Số phức