Câu 4.15 trang 179 sách bài tập Giải tích 12 Nâng caoHỏi khi số thức a thay đổi tùy ý thì các điểm của mặt phẳng phức biểu diễn các căn bậc hai của a + I vạch nên đường nào ? Hỏi khi số thức a thay đổi tùy ý thì các điểm của mặt phẳng phức biểu diễn các căn bậc hai của a + i vạch nên đường nào ? Giải Viết \(z = x + yi\left( {x,y \in R} \right)\) thì \({z^2} = a + i \Leftrightarrow \left\{ \matrix{{x^2} - {y^2} = a \hfill \cr 2xy = 1 \hfill \cr} \right.\) Phương trình \(2xy = 1\) chứng tỏ điểm M biểu diễn z phải thuộc hypebol \(y = {1 \over {2x}}\). Vì với mỗi điểm \(\left( {x,y} \right)\) của hylebol này, tìm được \(a = {x^2} - {y^2}\) nên M vạch nên toàn bộ hai nháy hypebol đó. Sachbaitap.com
Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 2. Căn bậc hai của số phức, phương trình bậc hai
|
Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn từng điều kiện sau: