Câu 4.39 trang 140 sách bài tập Đại số và Giải tích 11 Nâng caoChứng minh rằng các giới hạn sau không tồn tại Chứng minh rằng các giới hạn sau không tồn tại a) \(\mathop {\lim }\limits_{x \to + \infty } \sin 2x\) b) \(\mathop {\lim }\limits_{x \to + \infty } \cos 3x\) c) \(\mathop {\lim }\limits_{x \to 0} \cos {1 \over {2x}}\) d) \(\mathop {\lim }\limits_{x \to 0} \sin {2 \over x}.\) Hướng dẫn. a) Lấy hai dãy số \(({x_n})\) và \((x{'_n})\) với \({x_n} = n\pi ,x{'_n} = n\pi + {\pi \over 4}.\) Tìm \(\lim {x_n},\lim x{'_n},\lim f({x_n}),\lim f(x{'_n}).\) c) Chọn dãy số \(({x_n})\) sao cho \({1 \over {2{x_n}}} = n\pi \,hay\,{x_n} = {1 \over {2n\pi }}\) Tìm \(\lim {x_n}\) và \(\lim f({x_n}).\) Giải a) Lấy hai dãy số \(({x_n})\) và \((x{'_n})\) \({x_n} = n\pi ,x{'_n} = n\pi + {\pi \over 4}\) (như trong hướng dẫn). Khi đó \(\lim {x_n} = + \infty \) và \(\lim x{'_n} = + \infty \); \(\lim f({x_n}) = limsin2{x_n} = \lim \sin 2n\pi = 0\) và \(\lim f(x{'_n}) = limsin2x{'_n} = \lim \sin \left( {2n\pi + {\pi \over 2}} \right) = 1.\) Vì \(\lim f\left( {{x_n}} \right) \ne \lim f\left( {x{'_n}} \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to + \infty } \sin 2x.\) Cách giải khác. Lấy dãy số \(({x_n})\) với \({x_n} = {{n\pi } \over 2} + {\pi \over 4},\) Ta có \(\lim {x_n} = + \infty \) và \(f\left( {{x_n}} \right) = \sin 2{x_n} = \sin \left( {n\pi + {\pi \over 2}} \right) = \left\{ \matrix{ Dãy số \(\left( {f\left( {{x_n}} \right)} \right) = \left( {\sin 2{x_n}} \right)\) không có giới hạn. Do đó không tồn tại \(\mathop {\lim }\limits_{x \to + \infty } \sin 2x.\) b) Làm tương tự như câu a) không tồn tại \(\mathop {\lim }\limits_{x \to + \infty } \cos 3x\) c) Chọn dãy \(({x_n})\) sao cho Khi đó \(\lim {x_n} = 0\) và \(f\left( {{x_n}} \right) = \cos {1 \over {2{x_n}}} = \cos n\pi = \left\{ \matrix{ Dãy số \(\left( {f\left( {{x_n}} \right)} \right) = \left( {\cos {1 \over {2{x_n}}}} \right)\) không có giới hạn. Do đó không tồn tại \(\mathop {\lim }\limits_{x \to 0} \cos {1 \over {2x}}\); d) Tương tự câu c, không tồn tại \(\mathop {\lim }\limits_{x \to 0} \sin {2 \over x}.\) Sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
Xem thêm tại đây:
Bài 4: Định nghĩa và một số định lí về giới hạn của hàm số
|