GIẢM 50% HỌC PHÍ, TẶNG KÈM BỘ SÁCH TỔNG HỢP 21 ĐỀ MỚI NHẤT
Câu 44 trang 122 Sách bài tập Hình học 11 Nâng caoGiải bài tập Câu 44 trang 122 Sách bài tập Hình học 11 Nâng cao Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB = a, BC = 2a, cạnh bên SA vuông góc với mặt đáy, SA = a. Tính: a) Các góc giữa các mặt phẳng chứa các mặt bên và mặt phẳng đáy của hình chóp. b) Góc giữa hai mặt phẳng chứa hai mặt bên liên tiếp hoặc hai mặt bên đối diện của hình chóp. Trả lời
a) Dễ thấy \(\eqalign{ & \left( {SAB} \right) \bot \left( {ABC{\rm{D}}} \right) \cr & \left( {SA{\rm{D}}} \right) \bot \left( {ABC{\rm{D}}} \right) \cr} \) nên góc giữa mặt bên (SAB) và (SAD) với mp(ABCD) bằng 90°. Ta có \(\left( {S{\rm{D}}A} \right) \bot C{\rm{D}}\) và SDA là tam giác vuông tại A nên \(\widehat {S{\rm{D}}A}\) là góc giữa hai mặt phẳng (SDC) và (ABCD). Từ đó: \(\tan \widehat {S{\rm{D}}A} = {1 \over 2}\) Tương tự, \(\tan \widehat {SBA} = 1 \Leftrightarrow \widehat {SBA} = {45^0}\). Vậy mp(SCD) tạo với mp(ABCD) góc bằng φ mà \(\tan \varphi = {1 \over 2}\) và mp(SBC) tạo với mp(ABCD) góc 45°. b) Vì \(\left( {SA{\rm{D}}} \right) \bot \left( {SAB} \right)\) nên góc giữa hai mặt phẳng đó bằng 90°. Ta cũng có \(C{\rm{D}} \bot \left( {SA{\rm{D}}} \right)\) nên \(\left( {SC{\rm{D}}} \right) \bot SA{\rm{D}}\). Vậy góc giữa hai mặt phẳng (SAD) và (SCD) bằng 90°. Tương tự, ta cũng có góc giữa hai mặt phẳng (SAB) và (SBC) bằng 90°. Ta cần phải tính góc giữa hai mặt phẳng (SBC) và (SDC). Trong mp(ABCD), kẻ A qua đường thẳng vuông góc với AC, nó cắt hai đường thẳng BC và DC lần lượt tại I và J, thì \({\rm{IJ}} \bot {\rm{SC}}\). Trong mp(SAC) kẻ \(A{C_1} \bot SC\) thì \(\left( {IJ{C_1}} \right) \bot SC\) . Do đó, \(\widehat {I{C_1}J}\) hoặc \({180^0} - \widehat {I{C_1}J}\) là góc giữa hai mặt phẳng (SBC) và (SCD). Ta có: \(\eqalign{ & AJ = AC\tan \widehat {ACD} = 2a\sqrt 5 \cr & {1 \over {AC_1^2}} = {1 \over {A{S^2}}} + {1 \over {A{C^2}}} = {1 \over {{a^2}}} + {1 \over {5{a^2}}} = {6 \over {5{a^2}}} \cr & \Rightarrow A{C_1} = {{a\sqrt 5 } \over {\sqrt 6 }} \cr} \) Đặt \(\widehat {A{C_1}J} = \alpha \) thì \(\tan \alpha = {{AJ} \over {A{C_1}}} = {{2a\sqrt 5 } \over {{{a\sqrt 5 } \over {\sqrt 6 }}}} = 2\sqrt 6 \) Đặt \(\widehat {A{C_1}I} = \beta \) thì \(\tan \beta = {{AI} \over {A{C_1}}} = {{AC\tan \widehat {ACI}} \over {A{C_1}}} = {{a\sqrt 5 .{1 \over 2}} \over {{{a\sqrt 5 } \over {\sqrt 6 }}}} = {{\sqrt 6 } \over 2}\) Đặt \(\widehat {I{C_1}J} = \varphi \) thì \(\tan \varphi = {{2\sqrt 6 + {{\sqrt 6 } \over 2}} \over {1 - 2\sqrt 6 .{{\sqrt 6 } \over 2}}} = - {{\sqrt 6 } \over 2}\) Vậy góc giữa mp(SBC) và (SCD) là \({180^0} - \varphi \) mà \(\tan \varphi = {{ - \sqrt 6 } \over 2}\). Sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
|
Giải bài tập Câu 45 trang 122 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 46 trang 123 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 47 trang 123 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 48 trang 123 Sách bài tập Hình học 11 Nâng cao