Câu 4.48 trang 184 sách bài tập Giải tích 12 Nâng caoTìm số phức z thỏa mãn đồng thời Tìm số phức z thỏa mãn đồng thời \(\left| {{{z - 1} \over {z - 3}}} \right| = 1\) và \(\left| {{{z - 2i} \over {z + i}}} \right| = 2\) Giải Nếu viết \(z = x + yi\) \((x,y \in R)\) thì \(\left| {{{z - 1} \over {z - 3}}} \right| = 1 \Leftrightarrow x = 2\). Khi đó \(\left| {{{z - 2i} \over {z + i}}} \right| = {{\sqrt {4 + {{(y - 2)}^2}} } \over {\sqrt {4 + {{(y + 1)}^2}} }} = 2 \Leftrightarrow y = - 2\) Vậy \(z = 2 - 2i\) Sachbaitap.com
Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Ôn tập chương IV - Số phức
|
Tìm tất cả các điểm của mặt phẳng phức biểu diễn các số phức z sao
Viết dạng phương trình lượng giác của các số phức