Loading [Contrib]/a11y/accessibility-menu.js
💥 BÙNG NỔ! ĐỒNG GIÁ 449K, 499K TOÀN BỘ KHOÁ HỌC LỚP 1-12 TẠI TUYENSINH247

Duy nhất từ 16-18/07

Chỉ còn 2 ngày
Xem chi tiết

Câu 4.49 trang 142 sách bài tập Đại số và Giải tích 11 Nâng cao

Tìm

Ta gọi phần nguyên của số thực x là số nguyên lớn nhất không lớn hơn x và kí hiệu nó là \(\left[ x \right].\)

Chẳng hạn \(\left[ 5 \right] = 5;\left[ {3,12} \right] = 3;\left[ { - 2,725} \right] =  - 3.\) vẽ đồ thị ghàm số \(y = \left[ x \right]\) và tìm

                \(\mathop {\lim }\limits_{x \to {3^ + }} \left[ x \right],\mathop {\lim }\limits_{x \to {3^ - }} \left[ x \right]\) và \(\mathop {\lim }\limits_{x \to 3} \left[ x \right]\) (nếu có).

Giải

Đồ thị (h.4.2).Với \(2 < x<3;\left[ x \right] = 2\) ; do đó \(\mathop {\lim }\limits_{x \to {3^ - }} \left[ x \right] = 2.\)

Với \(3 < x < 4,\left[ x \right] = 3\) ; do đó \(\mathop {\lim }\limits_{x \to 3 ^+ } \left[ x \right] = 3.\)

Vì \(\mathop {\lim }\limits_{x \to {3^ - }} \left[ x \right] \ne \mathop {\lim }\limits_{x \to {3^ + }} \left[ x \right]\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 3} \left[ x \right]\).

              

Sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Xem thêm tại đây: Bài 5. Giới hạn một bên