Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 4.56 trang 184 sách bài tập Giải tích 12 Nâng cao

a) Trong mặt phẳng phức cho điểm A biểu diễn số phức

a) Trong  mặt phẳng phức cho điểm A biểu diễn số phức \(\omega \). Chứng minh rằng phép biến đổi của mặt phẳng phức biến điểm biểu diễn số phức z tùy ý thành biểu diễn số phức z’ sao cho \(z' - \omega  = i\left( {z - \omega } \right)\) là phép quay tâm A góc quay \({\pi  \over 2}\)

b) Giả sử ba đỉnh A, B, C của tam giác ABC trong mặt phẳng phức theo thứ tự biểu diễn các số \(\alpha ,\beta ,\gamma \). Gọi P, Q theo thứ tự là tâm các hình vuông dựng bên ngoài ABC trên các cạnh AB, AC và gọi N là trung điểm của BC. Tìm các số phức biểu diễn bởi các vectơ \(\overrightarrow {NQ} ,\overrightarrow {NP} \) rồi chứng minh NQP là tam giác vuông cân.

Giải

a) M là điểm biểu diễn số phức z, M’ là điểm biểu diễn số phức z’.

Khi M trùng với A tức là \(z = \omega \) thì \(z' = \omega \) nên A biến thành chính nó. Khi M không trung với A thì \(\left| {\overrightarrow {AM'} } \right| = \left| {z' - \omega } \right| = \left| i \right|\left| {z - \omega } \right| = \left| {z - \omega } \right| = \left| {\overrightarrow {AM} } \right|\) và một acgumen của \({{z' - \omega } \over {z - \omega }} = i\) là số đo góc lượng giác (AM,AM') nên góc này là \({\pi  \over 2}\). Từ đó phép biến đổi đang xét là phép quay tâm A, góc quay  \({\pi  \over 2}\)

b) (h.4.15) Giả sử ta đi dọc chu vi tam giác ABC theo ngược chiều quay kim đồng hồ. Khi đó Q là ảnh của C qua phép quay tâm là trung điểm của CA góc quay \({\pi  \over 2}\) nên nếu kí hiệu q là số phức biểu diễn bởi điểm Q thì theo câu a) ta có

\(q - {{\gamma  + \alpha } \over 2} = i\left( {\gamma  - {{\gamma  + \alpha } \over 2}} \right)\)

Từ đó

\(q = {1 \over 2}\left[ {\left( {1 + i} \right)\gamma  + \left( {1 - i} \right)\alpha } \right]\)

Đổi \(\alpha \) thành \(\beta \), \(\gamma \) thành \(\alpha \), ta suy ra p biểu diễn bởi P là

\(p = {1 \over 2}\left[ {\left( {1 + i} \right)\alpha  + \left( {1 - i} \right)\beta } \right]\)

Vậy \(\overrightarrow {NP} \) biểu diễn số phức \(p - {1 \over 2}\left( {\beta  + \gamma } \right) = {1 \over 2}\left[ {\left( {1 + i} \right)\alpha  - i\beta  - \gamma } \right]\) và \(\overrightarrow {NQ} \) biểu diễn số phức

\(q - {1 \over 2}\left( {\beta  + \gamma } \right) = {1 \over 2}\left[ {\left( {1 - i} \right)\alpha  - \beta  + i\gamma } \right]\). Rõ  ràng \(i,{1 \over 2}\left[ {\left( {1 - i} \right)\alpha  - \beta  + i\gamma } \right] = {1 \over 2}\left[ {\left( {1 + i} \right)\alpha  - i\beta  - \gamma } \right]\), nên suy ra \(NQ = NP\) và \(\overrightarrow {NQ},\overrightarrow {NP}  \) vuông góc (h.4.15)

                               

Sachbaitap.com

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Xem thêm tại đây: Ôn tập chương IV - Số phức