Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 46 trang 59 Sách Bài tập Hình học 11 Nâng cao

Cho hình chóp S.ABCD đáy là hình thang (AB // CD). Điểm M thuộc cạnh BC không trùng với B và C.

46. Trang 59 Sách Bài tập Hình học 11 Nâng cao

Cho hình chóp S.ABCD đáy là hình thang (AB // CD). Điểm M thuộc cạnh BC không trùng với B và C.

a) Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng (P) qua M và song song với mp(SAB). Thiết diện là hình gì?

b) Gọi E và F lần lượt là giao điểm của mp(P) với SD và SC. Chứng minh rằng giao điểm I của NE và MF chạy trên một đường thẳng cố định.

Giải

(h.99)

a) \(\left. \matrix{
\left( P \right)//\left( {SAB} \right) \hfill \cr
\left( P \right) \cap \left( {ABCD} \right) = MN \hfill \cr
\left( {SAB} \right) \cap \left( {ABCD} \right) = AB \hfill \cr} \right\} \Rightarrow MN//AB\,\,(1)\)

\(\left. \matrix{
\left( P \right)//\left( {SAB} \right) \hfill \cr
\left( P \right) \cap \left( {SBC} \right) = MF \hfill \cr
\left( {SAB} \right) \cap \left( {SBC} \right) = SB \hfill \cr} \right\} \Rightarrow MF//SB\,\,(2)\)

\(\left. \matrix{
\left( P \right)//\left( {SAB} \right) \hfill \cr
\left( P \right) \cap \left( {SAD} \right) = NE \hfill \cr
\left( {SAB} \right) \cap \left( {SAD} \right) = SA \hfill \cr} \right\} \Rightarrow NE//SA\,\,(3)\)

\(\left. \matrix{
\left( P \right)//CD \hfill \cr
CD \subset \left( {SCD} \right) \hfill \cr
\left( P \right) \cap \left( {SCD} \right){\rm{ = EF}} \hfill \cr} \right\} \Rightarrow EF//CD\,\,(4)\)

Các điểm N, E, F được xác định bởi (1), (2), (3), (4) là giao điểm của (P) với AD, SD, SC có tính chất EF // MN. Vậy thiết diện là hình thang MNEF.

b) Xét ba mặt phẳng (P), (SAD), (SBC). Ta có:

\(\eqalign{
& \left( P \right) \cap \left( {SAD} \right) = NE \cr
& \left( P \right) \subset \left( {SBC} \right) = MF \cr
& \left( {SAD} \right) \cap \left( {SBC} \right){\rm{ = }}\Delta \cr} \)

Vậy ba đường thẳng NE, MF, \(\Delta \) đồng quy tại I (I là giao điểm của NE và MF). Từ đó, điểm I chạy trên đường thẳng \(\Delta \) cố định.

sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: Bài 4: Hai mặt phẳng song song