Cho hai mặt phẳng song song (P) và (Q); hai đường thẳng song song a và b.
Cho một mặt phẳng (P) và một điểm A nằm ngoài (P). Chứng minh rằng tất cả những đường thẳng đi qua A và song song với (P) đều nằm cùng trong một mặt phẳng (Q) song song với (P).
Cho hình chóp S.ABCD có đáy là một tứ giác lồi. M là trung điểm của cạnh bên SA, N là trung điểm của cạnh bên SC.
Cho hình chóp S.ABCD có đáy là hình bình hành. Một mặt phẳng (P) cắt các cạnh bên SA, SB, SC, SD lần lượt tại A’, B’, C’, D’.
Cho hình chóp S.ABCD. Các điểm I, J, K lần lượt là trọng tâm các tam giác SAB, SBC, SCA.
Cho hình chóp S.ABCD đáy là hình thang (AB // CD). Điểm M thuộc cạnh BC không trùng với B và C.
Cho tứ diện ABCD. Gọi I và J lần lượt là trung điểm của AB và CD. Một mặt phẳng IJ cắt các cạnh AD và BC lần lượt tại N và M.
Cho tứ diện ABCD. Hai điểm M, N lần lượt thay đổi trên hai cạnh AB và CD. Tìm tập hợp trung điểm I của MN.
Hãy dùng định lí Ta-lét để giải bài tập 31 (chương II).
Cho tứ diện ABCD. Hãy dựng một hình hộp ngoại tiếp tứ diện đó (tức là dựng một hình hộp sao cho mỗi cạnh của tứ diện đều là đường chéo của một mặt của hình hộp).
Cho hình hộp ABCD.A’B’C’D’ có tất cả các mặt bên đều là hình vuông cạnh bằng a.
Xác định thiết diện của hình hộp khi cắt bởi mặt phẳng (P) qua điểm K và song song với mặt phẳng (EAC).
Cho lăng trụ tam giác ABC.A’B’C’. Gọi I, J, K lần lượt là tâm của các hình bình hành ACC’A’, BCC’B’, ABB’A’.
Cho hình hộp ABCD.A’B’C’D’. Điểm M thuộc cạnh AD, điểm N thuộc cạnh D’C’ sao cho AM : MD = D’N : NC’.
Cho hình hộp ABCD.A’B’C’D’. Gọi P, Q, R, S lần lượt là tâm các mặt bên ABB’A’, BCC’B’, CDD’C’, DAA’D’.
Cho hình chóp cụt tứ giác ABCD.A’B’C’D’, có các cạnh bên là AA’, BB’, CC’, DD’ và có đáy lớn ABCD là hình bình hành.