Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 4.66 trang 113 SBT Đại số 10 Nâng cao

Giải bài tập Câu 4.66 trang 113 SBT Đại số 10 Nâng cao

Tìm các giá trị của tham số m để hệ bất phương trình :

a. \(\left\{ {\begin{array}{*{20}{c}}{{x^2} - 3{ {x}} - 4 \le 0}\\{\left( {m - 1} \right)x - 2 \ge 0}\end{array}} \right.\) có nghiệm ;

b. \(\left\{ {\begin{array}{*{20}{c}}{{x^2} + 10{ {x}} + 16 \le 0}\\{m{ {x}} \ge 3m + 1}\end{array}} \right.\) vô nghiệm.

Giải:

a. Phương trình \({x^2} - 3{ {x}} - 4 = 0\) có hai nghiệm \({x_1} =  - 1,{x_2} = 4,\) nên bất phương trình \({x^2} - 3{ {x}} - 4 \le 0\) có tập nghiệm là \({S_1} = \left[ { - 1;4} \right].\)

Xét bất phương trình

\(\left( {m - 1} \right)x - 2 \ge 0 \Leftrightarrow \left( {m - 1} \right)x \ge 2.\)   (1)

*) Nếu \(m – 1 = 0\) thì bất phương trình trên vô nghiệm.

*) Nếu \(m – 1 > 0 ⇔ m > 1\) thì bất phương trình (1) có tập nghiệm là

\({S_2} = \left[ {\dfrac{2}{{m - 1}}; + \infty } \right).\)

Để hệ có nghiệm, điều kiện cần và đủ là \({S_1} \cap {S_2} \ne \emptyset \) tức là

\(\dfrac{2}{{m - 1}} \le 4 \Leftrightarrow \dfrac{1}{2} \le m - 1 \Leftrightarrow m \ge \dfrac{3}{2},\) thỏa mãn điều kiện m > 1.

Vậy \(m \ge \dfrac{3}{2}.\)

*) Nếu \(m – 1 < 0 ⇔ m < 1\) thì bất phương trình (1) có tập nghiệm là

\({S_3} = \left( { - \infty ;\dfrac{2}{{m - 1}}} \right].\)

Để hệ có nghiệm, điều kiện cần và đủ là

\({S_1} \cap {S_3} \ne \emptyset  \Leftrightarrow \dfrac{2}{{m - 1}} \ge  - 1\)

\(\Leftrightarrow  - \left( {m - 1} \right) \ge 2 \Leftrightarrow m \le  - 1.\)

Thỏa mãn điều kiện \(m < 1\). Vậy \(m ≤ -1\).

Tóm lại các giá trị của m để hệ có nghiệm là \(m \in \left( { - \infty ; - 1} \right] \cup \left[ {\dfrac{3}{2}; + \infty } \right).\)

b. Tập hợp các giá trị m thỏa mãn bài toán là :

\(\left( { - \dfrac{1}{{11}}; + \infty } \right).\)

Sachbaitap.com