Câu 4.70 trang 114 SBT Đại số 10 Nâng caoGiải bài tập Câu 4.70 trang 114 SBT Đại số 10 Nâng cao Cho phương trình : \(\left( {m - 2} \right){x^4} - 2\left( {m + 1} \right){x^2} + 2m - 1 = 0.\) Tìm các giá trị của tham số m để phương trình trên có : a. Một nghiệm ; b. Hai nghiệm phân biệt ; c. Bốn nghiệm phân biệt. Giải: a. + Với \(m = 2\), phương trình đã cho trở thành : \( - 6{{ {x}}^2} + 3 = 0 \Leftrightarrow {{ {x}}^2} = \dfrac{1}{2} \Leftrightarrow { {x}} = \pm \dfrac{1}{{\sqrt 2 }}.\) Phương trình có hai nghiệm, nên không thảo mãn yêu cầu đầu bài. + Với m ≠ 2, đặt \(t = {x^2} \ge 0,\) ta được phương trình \(f\left( t \right) = \left( {m - 2} \right){t^2} - 2\left( {m + 1} \right)t + 2m - 1 = 0. \,\,(*)\) Để phương trình đã cho có đúng một nghiệm thì phương trình (*) hoặc có nghiệm kép \(t = 0\) hoặc có một nghiệm âm, còn nghiệm thứ hai bằng 0. Xét \(t = 0\). Khi đó \(f\left( 0 \right) = 2m - 1 = 0 \Leftrightarrow m = \dfrac{1}{2}.\) Thay \(m = \dfrac{1}{2}\) vào (*) ta được : \(f\left( t \right) = t\left( { - \dfrac{3}{2}t - 3} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{t = 0}\\{t = - 2.}\end{array}} \right.\) Vậy \(m = \dfrac{1}{2}\) là giá trị cần tìm (để phương trình đã cho có một nghiệm). b. \(m = \dfrac{{7 + 3\sqrt 5 }}{2},m \in \left( {\dfrac{1}{2};2} \right].\) Hướng dẫn. Rõ ràng với \(m = 2\) phương trình có hai nghiệm \(x = \pm \dfrac{1}{{\sqrt 2 }}\) . Với \(m ≠ 2.\) Để phương trình đã cho có đúng hai nghiệm thì phương trình (*) hoặc có nghiệm kép dương hoặc có một nghiệm âm và một nghiệm dương. - Phương trình (*) có hai nghiệm trái dấu khi và chỉ khi \(ac < 0\) tức là \(\left( {m - 2} \right)\left( {2m - 1} \right) < 0\) hay \(\dfrac{1}{2} < m < 2\) - Phương trình (*) có nghiệm kép dương khi và chỉ khi \(∆’ = 0\) và \( - \dfrac{b}{{2{ {a}}}} > 0.\) \(\begin{array}{l}\Delta ' = - {m^2} + 7m - 1 = 0 \Leftrightarrow m = \dfrac{{7 \pm 3\sqrt 5 }}{2};\\ - \dfrac{b}{{2{ {a}}}} = \dfrac{{m + 1}}{{m - 2}} > 0 \Leftrightarrow m < - 1\,hoac\,m > 2.\end{array}\) Chỉ có \(m = \dfrac{{7 + 3\sqrt 5 }}{2}\) thỏa mãn hai điều kiện trên. c. \(2 < m < \dfrac{{7 + 3\sqrt 5 }}{2}.\) Hướng dẫn. Tìm \(m\) để phương trình \(f(t) = 0\) có hai nghiệm dương phân biệt. Điều kiện cần và đủ là \(∆’ > 0, S > 0\) và \(P > 0.\) Sachbaitap.com
Xem thêm tại đây:
Bài 7. Bất phương trình bậc hai
|