Câu 4.76 trang 149 sách bài tập Đại số và Giải tích 11 Nâng caoTìm các giới hạn sau: Tìm các giới hạn sau: a) \(\mathop {\lim }\limits_{x \to - 1} \sqrt {{{\left( {{x^2} + 1} \right)\left( {1 - 2x} \right)} \over {{x^2} + x + 1}}} \) b) \(\mathop {\lim }\limits_{x \to 11} \root 3 \of {{{{x^2} - 9x - 22} \over {\left( {x - 11} \right)\left( {{x^2} - 3x + 16} \right)}}} \) c) \(\mathop {\lim }\limits_{x \to + \infty } \sqrt {2{x^3} - {x^2} + 10} \) d) \(\mathop {\lim }\limits_{x \to {{\left( { - 4} \right)}^ - }} \left( {{2 \over {{x^2} + 3x - 4}} - {3 \over {x + 4}}} \right).\) Giải a) \(\sqrt 6 ;\) b) \({1 \over 2};\) c) \( + \infty ;\) d) \({2 \over {{x^2} + 3x - 4}} - {3 \over {x + 4}} = {2 \over {\left( {x - 1} \right)\left( {x + 4} \right)}} - {3 \over {x + 4}}\) \( = {{5 - 3x} \over {\left( {x - 1} \right)\left( {x + 4} \right)}} = {1 \over {x + 4}}.{{5 - 3x} \over {x - 1}}.\) Vì \(\mathop {\lim }\limits_{x \to {{\left( { - 4} \right)}^ - }} {1 \over {x + 4}} = - \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( { - 4} \right)}^ - }} {{5 - 3x} \over {x - 1}} = - {{17} \over 5} < 0\) nên \(\mathop {\lim }\limits_{x \to {{\left( { - 4} \right)}^ - }} \left( {{2 \over {{x^2} + 3x - 4}} - {3 \over {x + 4}}} \right) = + \infty .\) Sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Ôn tập chương IV - Giới hạn - SBT Toán 11 Nâng cao
|
Chứng minh rằng phương trình có ít nhất một nghiệm dương.