Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 48 trang 164 Sách bài tập (SBT) Toán 9 Tập 1

Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AM, AN với đường tròn (M,N là các tiếp điểm).

Cho đường  tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AM, AN với đường tròn (M,N là các tiếp điểm).

a)      Chứng minh rằngOA ⊥ MN.

b)      Vẽ đường kính NOC. Chứng minh rằng MC // AO.

c)      Tính độ dài các cạnh của tam giác AMN biết OM = 3cm, OA = 5cm.

Giải:

a) Ta có: AM = AN ( tính chất hai tiếp tuyến cắt nhau)

Suy ra tam giác AMN cân tại A

Mặt khác AO là đường phân giác của góc MAN ( tính chất hai tiếp tuyến cắt nhau)

Suy ra AO là đường cao của tam giác AMN (tính chất tam giác cân)

Vậy OA ⊥ MN.

b) Tam giác MNC nội tiếp trong đường tròn (O)

có NC là đường kính nên \(\widehat {CMN} = 90^\circ \)

suy ra: MN ⊥ MC

Mà      OA ⊥ MN (chứng minh trên)

Suy ra:  OA // MC

c) Ta có: AN ⊥ NC (tính chất tiếp tuyến)

Áp dụng định lí Pi-ta-go vào tam giác vuông AON ta có:

\(A{O^2} = A{N^2} + O{N^2}\)

Suy ra:  \(A{N^2} = A{O^2} - O{N^2} = {5^2} - {3^2} = 16\)

             AN = 4 (cm)

Suy ra: AM = AN = 4 (cm)

Gọi H là giao điểm của AO và MN

Ta có: \(MH = NH = {{MN} \over 2}\) (tính chất tam giác cân)

Tam giác AON vuông tại N có NH ⊥ AO. Theo hệ thức lượng trong tam giác vuông, ta có:

 \(OA.NH = AN.ON  \Rightarrow NH = {{AN.ON} \over {AO}} = {{4.3} \over 5} = 2,4 (cm) \)

MN = 2.NH = 2.2,4 = 4,8 (cm).

Sachbaitap.com

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.

  • Câu 49 trang 164 Sách bài tập (SBT) Toán 9 Tập 1

    Câu 49 trang 164 Sách bài tập (SBT) Toán 9 Tập 1

    Cho đường tròn (O), điểm M nằm bên ngoài đường tròn. Kẻ tiếp tuyến MD, ME với đường tròn (D, E là các tiếp điểm). Qua điểm I thuộc cung nhỏ DE, kẻ tiếp tuyến với đường tròn, cắt MD và ME theo thứ tự ở P và Q. Biết MD = 4cm, tính chu vi tam giác MPQ.

  • Câu 50 trang 164 Sách bài tập (SBT) Toán 9 Tập 1

    Câu 50 trang 164 Sách bài tập (SBT) Toán 9 Tập 1

    Cho góc xOy khác góc bẹt, điểm A nằm trên tia Ox. Dựng đường tròn (I) đi qua A và tiếp xúc với hai cạnh của góc xOy.

  • Câu 51 trang 164 Sách bài tập (SBT) Toán 9 Tập 1

    Câu 51 trang 164 Sách bài tập (SBT) Toán 9 Tập 1

    Cho nửa đường tròn tâm O đường kính AB. Gọi Ax, By là các tia vuông góc với AB (Ax,By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi M là điểm bất kì thuộc tia Ax. Qua M kẻ tiếp tuyến với nửa đường tròn, cắt By ở N.

  • Câu 52 trang 165  Sách bài tập (SBT) Toán 9 Tập 1

    Câu 52 trang 165 Sách bài tập (SBT) Toán 9 Tập 1

    Cho đường tròn (I) nội tiếp tam giác ABC. Các tiếp điểm trên AC, AB theo thứ tự là D, E. Cho BC = a, AC = b, AB = c. Tính độ dài các đoạn tiếp tuyến AD, AE theo a, b, c.