Câu 4.9 trang 135 sách bài tập Đại số và Giải tích 11 Nâng caoCho hai dãy số, hãy chứng minh Cho hai dãy số \(\left( {{u_n}} \right)\) và \(\left( {{v_n}} \right)\). Chứng minh rằng nếu \(\lim {u_n} = 0\) và tồn tại số dương sao cho \(\left| {{v_n}} \right| \le c\) với mọi n thì \(\lim \left( {{u_n}{v_n}} \right) = 0\) Giải Với mọi n, \(\left| {{u_n}{v_n}} \right| = \left| {{u_n}} \right|\left| {{v_n}} \right| \le c\left| {{u_n}} \right|\) Vì \(\lim \left( {{u_n}} \right) = 0\) nên \(\lim \left( {c\left| {{u_n}} \right|} \right) = 0.\) Từ đó suy ra \(\lim \left( {{u_n}{v_n}} \right) = 0\) Sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 2: Dãy có giới hạn hữu hạn
|
Người ta xếp các hình vuông kề với nhau như trong hình 4.1 dưới đây, mỗi hình vuông có độ dài cạnh bằng nửa độ dài cạnh của hình vuông trước nó.