Câu 4.9 trang 178 sách bài tập Giải tích 12 Nâng caoCho A, B, C, D là bốn điểm trong mặt phẳng phức biểu diễn theo thứ tự các số: Cho A, B, C, D là bốn điểm trong mặt phẳng phức biểu diễn theo thứ tự các số: \( - 1 + i\), \( - 1 - i\), \(2i,\), \(2 - 2i\), Tìm các số \({z_1},{z_2},{z_3},{z_4}\) theo thứ tự biểu diện bởi các vectơ \(\overrightarrow {AC} ,\overrightarrow {AD} ,\overrightarrow {BC} ,\overrightarrow {BD} \). Tính \({{{z_1}} \over {{z_2}}},{{{z_3}} \over {{z_4}}}\) và từ đó suy ra A, B, C, D cùng nằm trên một đường tròn (Xem bài tập 4.8). Tâm đường tròn đó biểu diễn số phức nào ? Giải (h.4.6) \(\overrightarrow {AC} \) biểu diễn số phức \({z_1} = 1 + i,(\overrightarrow {AD} \) biểu diễn số phức \({z_2} = 3 - 3i,\)do \({{{z_1}} \over {{z_2}}} = {{1 + i} \over {3 - 3i}} = {i \over 3}\) nên \(\overrightarrow {AC} .\overrightarrow {AD} = 0\) (xem bài tập 4.8) \(\overrightarrow {BC} \) biểu diễn số phức \({z_3} = 1 + 3i,(\overrightarrow {BD} \) biểu diễn số phức \({z_4} = 3 - i.\) Do \({{{z_3}} \over {{z_4}}} = {{1 + 3i} \over {3 - i}} = i\) nên \(\overrightarrow {BC} .\overrightarrow {BD} = 0\) (xem bài tập 4.8) Vậy CD là một đường kính của đường tròn đi qua bốn điểm A, B, C, D. Tâm đường tròn đó là trung điểm CD nên nó biểu diễn số \({{2i + \left( {2 - 2i} \right)} \over 2} = 1\)
Sachbaitap.com
Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 1. Số phức
|
Xác định tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn: