Câu 49 trang 60 Sách bài tập (SBT) Toán 9 tập 2Chứng minh rằng khi a và c trái dấu thì phương trình trùng phương chỉ có hai nghiệm và chúng là hai số đối nhau. Chứng minh rằng khi a và c trái dấu thì phương trình trùng phương \(a{x^4} + b{x^2} + c = 0\) chỉ có hai nghiệm và chúng là hai số đối nhau. Giải Phương trình: \(a{x^4} + b{x^2} + c = 0\) đặt \({x^2} = t \Rightarrow t \ge 0\) Ta có phương trình: \(a{t^2} + bt + c = 0\) Vì a và c trái dấu ⇒ ac < 0. Phương trình có hai nghiệm phân biệt: t1 và t2 Theo hệ thức Vi-ét ta có: \({t_1}.{t_2} = {c \over a} < 0\) nên t1 và t2 trái dấu. Giả sử t1 < 0; t2 > 0. Vì t ≥ 0 ⇒ t1 < 0 loại \( \Rightarrow {x^2} = {t_2} \Rightarrow x = \pm \sqrt {{t_2}} \) Vậy phương trình trùng phương: \(a{x^4} + b{x^2} + c = 0\) có hệ số a và c trái dấu thì phương trình trùng phương có 2 nghiệm đối nhau. Sachbaitap.com
Xem lời giải SGK - Toán 9 - Xem ngay >> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10
Xem thêm tại đây:
Bài 7: Phương trình quy về phương trình bậc hai
|