Câu 57 trang 125 Sách bài tập Hình học 11 Nâng caoGiải bài tập Câu 57 trang 125 Sách bài tập Hình học 11 Nâng cao Cho hình chóp S.ABC có đáy là tam giác vuông ở C, cạnh SA vuông góc với mặt phẳng đáy, \(AC = a,BC = b,SA = h\). Gọi M và N lần lượt là trung điểm của các cạnh AC và SB. a) Tính độ dài MN. b) Tìm hệ thức liên hệ giữa a, b, h để MN là đường vuông góc chung của AC và SB. Trả lời a) Gọi H là trung điểm của AB thì NH // SA. Do \(SA \bot \left( {ABC} \right)\) nên \(NH \bot \left( {ABC} \right)\), từ đó \(\widehat {NHM} = {90^0}\). Vậy \(\eqalign{ & M{N^2} = N{H^2} + H{M^2} \cr & = {{S{A^2}} \over 4} + {{B{C^2}} \over 4} = {1 \over 4}\left( {{h^2} + {b^2}} \right) \cr & \Rightarrow MN = {1 \over 2}\sqrt {{h^2} + {b^2}} \cr} \) b) h = b Sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
Xem thêm tại đây:
Bài 5: Khoảng cách
|
Giải bài tập Câu 58 trang 126 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 59 trang 126 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 60 trang 126 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 61 trang 126 Sách bài tập Hình học 11 Nâng cao