Câu 6 trang 114 Sách bài tập Hình học 11 Nâng caoGiải bài tập Câu 6 trang 114 Sách bài tập Hình học 11 Nâng cao Cho hình hộp ABCD.A’B’C’D’. Gọi \({D_1},{D_2},{D_3}\) lần lượt là điểm đối xứng của điểm D’ qua A, B’, C. Chứng tỏ rằng B là trọng tâm của tứ diện \({D_1}{D_2}{D_3}D'\). Trả lời:
Cách 1. Đặt \(\overrightarrow {AA'} = \overrightarrow a ,\,\,\overrightarrow {AB} = \overrightarrow {b,} \,\,\overrightarrow {AD} = \overrightarrow c \) Từ giả thiết, ta có \(\overrightarrow {B{\rm{D}}'} + \overrightarrow {B{{\rm{D}}_1}} = 2\overrightarrow {BA} = - 2\overrightarrow b \) mà \(\overrightarrow {B{\rm{D}}'} = \overrightarrow a - \overrightarrow b + \overrightarrow c \) Vậy \(\overrightarrow {B{{\rm{D}}_1}} = - \overrightarrow a - \overrightarrow b - \overrightarrow {c.} \) Lập luận tương tự như trên, ta có \(\overrightarrow {B{{\rm{D}}_2}} = \overrightarrow a + \overrightarrow b - \overrightarrow c \) và \(\overrightarrow {B{{\rm{D}}_3}} = - \overrightarrow a + \overrightarrow b + \overrightarrow c \) Vậy \(\overrightarrow {B{{\rm{D}}_1}} + \overrightarrow {B{{\rm{D}}_2}} + \overrightarrow {B{{\rm{D}}_3}} + \overrightarrow {B{\rm{D}}'} = \overrightarrow 0 \) Điều này chứng tỏ B là trọng tâm của tứ diện \({D_1}{D_2}{D_3}D'\) . Cách 2. Gọi I là giao điểm của BD’ và mp(AB’C) thì D’I = 2IB. Gọi J là giao điểm của BD’ với mp (D1D2D3), do D1, D2, D3 là các điểm đối xứng của D’ lần lượt qua A, B’, C nên IJ = ID’ hay \(D'B = {3 \over 4}D'J\). Mặt khác I là trọng tâm tam giác AB’C nên J là trọng tâm tam giác D1D2D3. Từ đó B là trọng tâm của tứ diện \({D_1}{D_2}{D_3}D'\). Sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ
|
Giải bài tập Câu 7 trang 114 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 8 trang 114 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 9 trang 114 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 10 trang 115 Sách bài tập Hình học 11 Nâng cao