Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 6.2 trang 32 Sách bài tập (SBT) Toán 8 tập 1

Trong mỗi trường hợp sau hãy tìm phân thức Q thỏa mãn điều kiện :

Trong mỗi trường hợp sau hãy tìm phân thức Q thỏa mãn điều kiện :

a. \({1 \over {{x^2} + x + 1}} - Q = {1 \over {x - {x^2}}} + {{{x^2} + 2x} \over {{x^3} - 1}}\)

b. \({{2x - 6} \over {{x^3} - 3{x^2} - x + 3}} + Q = {6 \over {x - 3}} - {{2{x^2}} \over {1 - {x^2}}}\)

Giải:

a. \({1 \over {{x^2} + x + 1}} - Q = {1 \over {x - {x^2}}} + {{{x^2} + 2x} \over {{x^3} - 1}}\)

\(\eqalign{  & Q = {1 \over {{x^2} + x + 1}} - {1 \over {x - {x^2}}} - {{{x^2} + 2x} \over {{x^3} - 1}}  \cr  & Q = {1 \over {{x^2} + x + 1}} + {1 \over {x\left( {x - 1} \right)}} - {{{x^2} + 2x} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}  \cr  & Q = {{x\left( {x - 1} \right) + {x^2} + x + 1 - x\left( {{x^2} + 2x} \right)} \over {x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}}  \cr  & Q = {{{x^2} - x + {x^2} + x + 1 - {x^3} - 2{x^2}} \over {x\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = {{1 - {x^3}} \over {x\left( {{x^3} - 1} \right)}} = {{ - \left( {{x^3} - 1} \right)} \over {x\left( {{x^3} - 1} \right)}}  \cr  & Q =  - {1 \over x} \cr} \)

b. \({{2x - 6} \over {{x^3} - 3{x^2} - x + 3}} + Q = {6 \over {x - 3}} - {{2{x^2}} \over {1 - {x^2}}}\)

\(\eqalign{  & Q = {6 \over {x - 3}} + {{2{x^2}} \over {{x^2} - 1}} - {{2x - 6} \over {{x^3} - 3{x^2} - x + 3}}  \cr  & Q = {6 \over {x - 3}} + {{2{x^2}} \over {{x^2} - 1}} - {{2x - 6} \over {\left( {x - 3} \right)\left( {{x^2} - 1} \right)}}  \cr  & Q = {{6\left( {{x^2} - 1} \right) + 2{x^2}\left( {x - 3} \right) - \left( {2x - 6} \right)} \over {\left( {x - 3} \right)\left( {{x^2} - 1} \right)}}  \cr  & Q = {{6{x^2} - 6 + 2{x^3} - 6{x^2} - 2x + 6} \over {\left( {x - 3} \right)\left( {{x^2} - 1} \right)}} = {{2{x^3} - 2x} \over {\left( {x - 3} \right)\left( {{x^2} - 1} \right)}} = {{2x\left( {{x^2} - 1} \right)} \over {\left( {x - 3} \right)\left( {{x^2} - 1} \right)}}  \cr  & Q = {{2x} \over {x - 3}} \cr} \)

Sachbaitap.com

Xem lời giải SGK - Toán 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.