Câu 67 trang 87 Sách bài tập (SBT) Toán 8 tập 1Chứng minh rằng AC + CB < AM + MB. Cho tam giác ABC. Điểm M nằm trên đường phân giác của góc ngoài đỉnh C (M khác C). Chứng minh rằng AC + CB < AM + MB. Giải: Trên tia đối tia CB lấy điểm E sao cho CE = CA. Nối MA, ME nên ∆ ACE cân tại C có CM là đường trung trực (tính chất tam giác cân) ⇒ MA = ME ( tính chất đường trung trực) Ta có: AC + BC = BC + CE = BE (1) MA + MB = MB + ME (2) Trong ∆ MBE ta có: BE < MB + ME ( bất đẳng thức tam giác) (3) Từ (1), (2) và (3) suy ra: AC + BC < MA + MB Sachbaitap.com
Xem lời giải SGK - Toán 8 - Xem ngay >> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 6. Đối xứng trục
|
Trong các hình nét đậm vẽ trên giấy kẻ ô vuông ở hình 4, hình 5, hình nào có trục đối xứng ?
Chứng minh rằng giao điểm hai đường chéo của hình thang cân nằm trên trục đối xứng của hình thang cân.
Cho góc nhọn xOy, điểm A nằm trong góc đó. Dựng điểm B thuộc tia Ox, điểm C thuộc tia Oy sao cho tam giác ABC có chu vi nhỏ nhất.