Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 71 trang 63 Sách bài tập (SBT) Toán 9 tập 2

a) Tìm các giá trị của m để phương trình có nghiệm.

Cho phương trình:

\({x^2} - 2\left( {m + 1} \right)x + {m^2} + m - 1 = 0\)

a) Tìm các giá trị của m để phương trình có nghiệm.

b) Trong trường hợp phương trình có nghiệm là x1, x2 hãy tính theo m:

\({x_1} + {x_2};{x_1}{x_2};{x_1}^2 + {x_2}^2\)

Giải

a) Phương trình có nghiệm khi và chỉ khi \(\Delta ' \ge 0\)

\(\eqalign{
& \Delta ' = {\left[ { - \left( {m + 1} \right)} \right]^2} - 1\left( {{m^2} + m - 1} \right) \cr
& = {m^2} + 2m + 1 - {m^2} - m + 1 = m + 2 \cr
& \Delta ' \ge 0 \Rightarrow m + 2 \ge 0 \Leftrightarrow m \ge - 2 \cr} \)

Vậy với m ≥ -2 thì phương trình đã cho có nghiệm.

b) Phương trình có 2 nghiệm x1 và x2, theo hệ thức Vi-ét ta có:

\(\eqalign{
& {x_1} + {x_2} = {{2\left( {x + 1} \right)} \over 1} = 2m + 2 \cr
& {x_1}{x_2} = {{{m^2} + m - 1} \over 1} = {m^2} + m - 1 \cr
& {x_1}^2 + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} \cr
& = {\left( {2m + 2} \right)^2} - 2\left( {{m^2} + m - 1} \right) \cr
& = 4{m^2} + 8m + 4 - 2{m^2} - 2m + 2 \cr
& = 2{m^2} + 6m + 6 \cr} \)

Sachbaitap.com

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.