Câu 73 trang 128 Sách bài tập Hình học 11 Nâng caoGiải bài tập Câu 73 trang 128 Sách bài tập Hình học 11 Nâng cao Cho M, N lần lượt là trung điểm của các cạnh AB và CD của tứ diện ABCD; P là điểm thuộc đường thẳng AD sao cho \(\overrightarrow {PA} = k\overrightarrow {P{\rm{D}}} \), k là số cho trước (k ≠ 1). Xác định điểm Q thuộc đường thẳng BC sao cho PQ và MN cắt nhau. Khi đó, hãy tính tỉ số \({{QB} \over {QC}}.\) Trả lời
MN cắt PQ nên các điểm M, N, P, Q cùng thuộc một mặt phẳng. Điều này tương đương với có các số x, y sao cho \(\overrightarrow {MP} = x\overrightarrow {MN} + y\overrightarrow {MQ} \). Đặt \(\overrightarrow {DA} = \overrightarrow a ,\overrightarrow {DB} = \overrightarrow b ,\overrightarrow {DC} = \overrightarrow c .\) Khi đó \(\eqalign{ & \overrightarrow {MN} = {1 \over 2}\left( {\overrightarrow {A{\rm{D}}} + \overrightarrow {BC} } \right) \cr & = {1 \over 2}\left( { - \overrightarrow a - \overrightarrow b + \overrightarrow c } \right) \cr & \overrightarrow {MP} = {{\overrightarrow {MA} - k\overrightarrow {M{\rm{D}}} } \over {1 - k}} \cr & = {1 \over {1 - k}}\left[ {{1 \over 2}\left( {\overrightarrow a - \overrightarrow b } \right) - {k \over 2}\left( {\overrightarrow a - \overrightarrow b - 2\overrightarrow a } \right)} \right] \cr & = {1 \over {1 - k}}\left[ {{1 \over 2}\left( {\overrightarrow a - \overrightarrow b } \right) + {k \over 2}\left( {\overrightarrow a + \overrightarrow b } \right)} \right] \cr & = {1 \over {2\left( {1 - k} \right)}}\left[ {\left( {1 + k} \right)\overrightarrow a + \left( {k - 1} \right)\overrightarrow b } \right] \cr & = {{k + 1} \over {2\left( {1 - k} \right)}}\overrightarrow a - {1 \over 2}\overrightarrow {b.} \cr & \overrightarrow {MQ} = \overrightarrow {MB} + \overrightarrow {BQ} \cr & = {1 \over 2}\left( {\overrightarrow b - \overrightarrow a } \right) + t\left( { - \overrightarrow b + \overrightarrow c } \right) \cr & = - {1 \over 2}\overrightarrow a + \left( {{1 \over 2} - t} \right)\overrightarrow b + t\overrightarrow c \cr} \) Từ đó ta có \(\eqalign{ & \overrightarrow {MP} = x\overrightarrow {MN} + y\overrightarrow {MQ} \cr & \Leftrightarrow \left\{ \matrix{ {{k + 1} \over {2\left( {1 - k} \right)}} = - {1 \over 2}x - {1 \over 2}y \hfill \cr - {1 \over 2} = - {1 \over 2}x + y\left( {{1 \over 2} - t} \right) \hfill \cr 0 = {1 \over 2}x + yt \hfill \cr} \right. \cr & \Rightarrow y = - 1,x = {{k + 1} \over {k - 1}} + 1 = {{2k} \over {k - 1}} \cr & t = {k \over {k - 1}} \cr} \) Như vậy \(\eqalign{ & \overrightarrow {BQ} = {k \over {k - 1}}\overrightarrow {BC} = {k \over {k - 1}}\left( {\overrightarrow {BQ} + \overrightarrow {QC} } \right) \cr & \Leftrightarrow \left( {1 - {k \over {k - 1}}} \right)\overrightarrow {BQ} = {k \over {k - 1}}\overrightarrow {QC} \cr & \Leftrightarrow - \overrightarrow {BQ} = k.\overrightarrow {QC} \cr & \Leftrightarrow {{QB} \over {QC}} = \left| k \right| \cr} \) Sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
|
Giải bài tập Câu 74 trang 128 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 75 trang 128 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 76 trang 128 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 77 trang 129 Sách bài tập Hình học 11 Nâng cao