Câu 74 trang 128 Sách bài tập Hình học 11 Nâng caoGiải bài tập Câu 74 trang 128 Sách bài tập Hình học 11 Nâng cao Cho tứ diện ABCD. Gọi \({A_1},{B_1},{C_1},{D_1}\) là các điểm lần lượt thuộc các đường thẳng AB, BC, CD, DA sao cho \(\overrightarrow {{A_1}A} = k\overrightarrow {{A_1}B} ,\overrightarrow {{B_1}B} = k\overrightarrow {{B_1}C} \) , \(\overrightarrow {{C_1}C} = k\overrightarrow {{C_1}D} ,\overrightarrow {{D_1}D} = k\overrightarrow {{D_1}A} \). Với giá trị bào của k thì bốn điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc một mặt phẳng? Trả lời:
Cách 1. Đặt \(\overrightarrow {DA} = \overrightarrow a ,\overrightarrow {DB} = \overrightarrow b ,\overrightarrow {DC} = \overrightarrow c \) thì \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) không đồng phẳng. Các điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc một mặt phẳng khi và chỉ khi có các số m, n để \(\overrightarrow {{D_1}{B_1}} = m\overrightarrow {{D_1}{A_1}} + n\overrightarrow {{D_1}{C_1}} \,\,\,\,\,\,\,\,\,\left( 1 \right)\) Từ hệ thức \(\overrightarrow {{B_1}B} = k\overrightarrow {{B_1}C} \), ta có \(\overrightarrow {{D_1}{B_1}} = {{\overrightarrow {{D_1}B} - k\overrightarrow {{D_1}C} } \over {1 - k}}\) hay \(\eqalign{ & \overrightarrow {{D_1}{B_1}} = {{\overrightarrow {{D_1}D} + \overrightarrow {DB} - k\left( {\overrightarrow {{D_1}D} + \overrightarrow {DC} } \right)} \over {1 - k}} \cr & = \overrightarrow {{D_1}D} + {1 \over {1 - k}}\overrightarrow b - {k \over {1 - k}}\overrightarrow c \cr} \) Mặt khác \(\eqalign{ & \overrightarrow {{D_1}D} = k\overrightarrow {{D_1}A} = k\left( {\overrightarrow {{D_1}D} + \overrightarrow {DA} } \right) \cr & \Rightarrow \overrightarrow {{D_1}D} = {k \over {1 - k}}\overrightarrow a \cr} \) Vậy \(\overrightarrow {{D_1}{B_1}} = {k \over {1 - k}}\overrightarrow a + {1 \over {1 - k}}\overrightarrow b - {k \over {1 - k}}\overrightarrow c \). Tương tự như trên, ta có \(\eqalign{ & \overrightarrow {{D_1}{A_1}} = {{\overrightarrow {{D_1}A} - k\overrightarrow {{D_1}B} } \over {1 - k}} \cr & = {{\overrightarrow {{D_1}D} + \overrightarrow {DA} - k\left( {\overrightarrow {{D_1}D} + \overrightarrow {DB} } \right)} \over {1 - k}} \cr & = \overrightarrow {{D_1}D} + {1 \over {1 - k}}\overrightarrow a - {k \over {1 - k}}\overrightarrow b \cr} \) hay \(\eqalign{ & \overrightarrow {{D_1}{A_1}} = {{k + 1} \over {1 - k}}\overrightarrow a - {k \over {1 - k}}\overrightarrow b \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right) \cr & \overrightarrow {{D_1}{C_1}} = {{\overrightarrow {{D_1}C} - k\overrightarrow {{D_1}D} } \over {1 - k}} \cr & = {{\overrightarrow {{D_1}D} + \overrightarrow {DC} - k\overrightarrow {{D_1}D} } \over {1 - k}} \cr & = \overrightarrow {{D_1}D} + {1 \over {1 - k}}\overrightarrow c \cr} \) do đó \(\overrightarrow {{D_1}{C_1}} = {k \over {1 - k}}\overrightarrow a + {1 \over {1 - k}}\overrightarrow c .\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\) Từ (1), (2), (3), (4) ta có các điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc mặt phẳng khi và chỉ khi \(k\overrightarrow a + \overrightarrow b - k\overrightarrow c \) \(= \left( {mk + nk + m} \right)\overrightarrow a - mk\overrightarrow b + n\overrightarrow c \) Do \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) không đồng phẳng nên đẳng thức trên xảy ra khi và chỉ khi có các số m, n để \(\left\{ \matrix{ k = mk + nk + m \hfill \cr 1 = - mk \hfill \cr - k = n \hfill \cr} \right.\) Điều đó tương đương với \(k = - 1 - {k^2} - {1 \over k}\) hay \({k^3} + {k^2} + k + 1 = 0\) hay k = -1. Vậy với k = -1 thì các điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc một mặt phẳng. Cách 2. Đặt \(\overrightarrow {DA} = \overrightarrow a ,\overrightarrow {DB} = \overrightarrow b ,\overrightarrow {DC} = \overrightarrow c \). Tìm k để các điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc một mặt phẳng tương đương với việc tìm k để có biểu diễn \(\overrightarrow {D{A_1}} = x\overrightarrow {D{B_1}} + y\overrightarrow {D{C_1}} + z\overrightarrow {{\rm{D}}{{\rm{D}}_1}} \) với x + y + z = 1 (a) Từ hệ thức \(\overrightarrow {{A_1}A} = k\overrightarrow {{A_1}B} \) ta có \(\eqalign{ & \overrightarrow {D{A_1}} = {{\overrightarrow {DA} - k\overrightarrow {DB} } \over {1 - k}} \cr & = {1 \over {1 - k}}\overrightarrow a - {k \over {1 - k}}\overrightarrow b \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right) \cr} \) Tương tự như trên, ta cũng có \(\overrightarrow {D{B_1}} = {1 \over {1 - k}}\overrightarrow b - {k \over {1 - k}}\overrightarrow c \,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\) Mặt khác từ \(\overrightarrow {{C_1}C} = k\overrightarrow {{C_1}D} \) ta có \(\eqalign{ & \overrightarrow {{C_1}D} + \overrightarrow {DC} = k\overrightarrow {{C_1}D} \cr & \Leftrightarrow \overrightarrow {D{C_1}} = {1 \over {1 - k}}\overrightarrow c \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 3 \right) \cr} \) Tương tự từ \(\overrightarrow {{D_1}D} = k\overrightarrow {{D_1}A} \), ta cũng có \(\overrightarrow {{D_1}D} = {k \over {1 - k}}\overrightarrow a \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\) Từ (1), (2), (3), (4), ta suy ra \(\overrightarrow {D{A_1}} = - {1 \over k}\overrightarrow {{\rm{D}}{{\rm{D}}_1}} - k\overrightarrow {D{B_1}} - {k^2}\overrightarrow {D{C_1}} \,\,\,\,\,\,\,\,\,\,\,\left( b \right)\) Từ (a) và (b) ta có các điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc một mặt phẳng khi và chỉ khi: \(\eqalign{ & - {1 \over k} - k - {k^2} = 1 \cr & \Leftrightarrow {k^3} + {k^2} + k + 1 = 0 \cr & \Leftrightarrow k = - 1 \cr} \) Vậy với k = -1 thì các điểm \({A_1},{B_1},{C_1},{D_1}\) cùng thuộc một mặt phẳng. Sachbaitap.com
Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc
|
Giải bài tập Câu 75 trang 128 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 76 trang 128 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 77 trang 129 Sách bài tập Hình học 11 Nâng cao
Giải bài tập Câu 78 trang 129 Sách bài tập Hình học 11 Nâng cao