Câu 84 trang 156 Sách bài tập (SBT) Toán 8 tập 2Tìm diện tích toàn phần và thể tích của lăng trụ đứng có các kích thước như ở hình 164. Tìm diện tích toàn phần và thể tích của lăng trụ đứng có các kích thước như ở hình 164.
Giải: Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có: \(B{C^2} = A{B^2} + A{C^2} = {9^2} + {12^2} = 225\) Suy ra: BC = 15 (cm) Diện tích xung quanh bằng: \({S_{xq}} = \left( {9 + 12 + 15} \right).10 = 360(c{m^2})\) Diện tích mặt đáy bằng: \(S = {1 \over 2}.9.12 = 54(c{m^2})\) Diện tích toàn phần bằng: \({S_{TP}} = 360 + 2.54 = 468(c{m^2})\) c. Thể tích của hình lăng trụ bằng: \(V = S.h = 54.10 = 540(c{m^3})\) Sachbaitap.com
Xem lời giải SGK - Toán 8 - Xem ngay >> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Ôn tập chương IV - Hình lăng trụ đứng. Hình chóp đều
|
Một hình chóp tứ giác đều S.ABCD có độ dài cạnh đáy là 10cm, chiều cao hình chóp là 12cm. Tính:
Thể tích của một hình chóp đều là 126cm3, chiều cao của hình chóp là 6cm. Như vậy: Trong các số dưới đây, số nào là diện tích đáy của nó ?
Cho hình chóp cụt tứ giác đều ABCD.A’B’C’D’ có các cạnh đáy là a và 2a, chiều cao của mặt bên là a.