Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 84 trang 62 Sách bài tập (SBT) Toán 8 tập 2

Với giá trị nào của x thì :

Với giá trị nào của x thì :

a. Giá trị biểu thức \({{2x - 3} \over {35}} + {{x\left( {x - 2} \right)} \over 7}\) không lớn hơn giá trị của biểu thức \({{{x^2}} \over 7} - {{2x - 3} \over 5}\) ?

b. Giá trị biểu thức \({{6x + 1} \over {18}} + {{x + 3} \over {12}}\) không nhỏ hơn giá trị biểu thức \({{5x + 3} \over 6} + {{12 - 5x} \over 9}\) ?

Giải:

a. Giá trị của biểu thức \({{2x - 3} \over {35}} + {{x\left( {x - 2} \right)} \over 7}\) không lớn hơn giá trị của biểu thức \({{{x^2}} \over 7} - {{2x - 3} \over 5}\) nghĩa là \({{2x - 3} \over {35}} + {{x\left( {x - 2} \right)} \over 7} \le {{{x^2}} \over 7} - {{2x - 3} \over 5}\)

Ta có:

\({{2x - 3} \over {35}} + {{x\left( {x - 2} \right)} \over 7} \le {{{x^2}} \over 7} - {{2x - 3} \over 5}\)

\(\eqalign{  &  \Leftrightarrow {{2x - 3} \over {35}}.35 + {{x\left( {x - 2} \right)} \over 7}.35 \le {{{x^2}} \over 7}.35 - {{2x - 3} \over 5}.35  \cr  &  \Leftrightarrow 2x - 3 + 5{x^2} - 10x \le 5{x^2} - 14x + 21  \cr  &  \Leftrightarrow 2x + 5{x^2} - 10x - 5{x^2} + 14x \le 21 + 3  \cr  &  \Leftrightarrow 6x \le 24 \Leftrightarrow x \le 4 \cr} \)

Vậy với \(x \le 4\) thì giá trị biểu thức \({{2x - 3} \over {35}} + {{x\left( {x - 2} \right)} \over 7}\) không lớn hơn giá trị của biểu thức \({{{x^2}} \over 7} - {{2x - 3} \over 5}\)

b. Giá trị của biểu thức \({{6x + 1} \over {18}} + {{x + 3} \over {12}}\) không nhỏ hơn giá trị của biểu thức \({{5x + 3} \over 6} + {{12 - 5x} \over 9}\) nghĩa là \({{6x + 1} \over {18}} + {{x + 3} \over {12}} \ge {{5x + 3} \over 6} + {{12 - 5x} \over 9}\)

Ta có:

\({{6x + 1} \over {18}} + {{x + 3} \over {12}} \ge {{5x + 3} \over 6} + {{12 - 5x} \over 9}\)

\(\eqalign{  &  \Leftrightarrow {{6x + 1} \over {18}}.36 + {{x + 3} \over {12}}.36 \ge {{5x + 3} \over 6}.36 + {{12 - 5x} \over 9}.36  \cr  &  \Leftrightarrow 12x + 2 + 3x + 9 \ge 30x + 18 + 48 - 20x  \cr  &  \Leftrightarrow 12x + 3x - 30x + 20x \ge 18 + 48 - 2 - 9  \cr  &  \Leftrightarrow 5x \ge 55 \Leftrightarrow x \ge 11 \cr} \)

Vậy với \(x \ge 11\) thì giá trị biểu thức \({{6x + 1} \over {18}} + {{x + 3} \over {12}}\) không nhỏ hơn giá trị của biểu thức \({{5x + 3} \over 6} + {{12 - 5x} \over 9}\)

Sachbaitap.com

Xem lời giải SGK - Toán 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.