Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 85 trang 19 Sách Bài Tập (SBT) Toán 9 Tập 1

Cho biểu thức

Cho biểu thức:

\(P = {{\sqrt x  + 1} \over {\sqrt x  - 2}} + {{2\sqrt x } \over {\sqrt x  + 2}} + {{2 + 5\sqrt x } \over {4 - x}}\)

a) Rút gọn P với \(x \ge 0\) và \(x \ne 4.\)

b) Tìm x để P = 2.

Gợi ý làm bài

a) Điều kiện: \(x \ge 0,x \ne 4\)

Ta có:

\(P = {{\sqrt x  + 1} \over {\sqrt x  - 2}} + {{2\sqrt x } \over {\sqrt x  + 2}} + {{2 + 5\sqrt x } \over {4 - x}}\)

\( = {{(\sqrt x  + 1)(\sqrt x  + 2)} \over {{{(\sqrt x )}^2} - {2^2}}} + {{2\sqrt x (\sqrt x  - 2)} \over {{{(\sqrt x )}^2} - {2^2}}} - {{2 + 5\sqrt x } \over {x - 4}}\)

\( = {{x + 2\sqrt x  + \sqrt x  + 2} \over {x - 4}} + {{2x - 4\sqrt x } \over {x - 4}} - {{2 + 5\sqrt x } \over {x - 4}}\)

\( = {{x + 3\sqrt x  + 2 + 2x - 4\sqrt x  - 2 - 5\sqrt x } \over {x - 4}}\)

\( = {{3x - 6\sqrt x } \over {x - 4}} = {{3\sqrt x (\sqrt x  - 2)} \over {(\sqrt x  + 2)(\sqrt x  - 2)}} = {{3\sqrt x } \over {\sqrt x  + 2}}\)

b) Ta có: P = 2 \(\eqalign{
& \Leftrightarrow {{3\sqrt x } \over {\sqrt x + 2}} = 2 \cr
& \Leftrightarrow 3\sqrt x = 2(\sqrt x + 2) \Leftrightarrow 3\sqrt x = 2\sqrt x + 4 \cr} \)

\( \Leftrightarrow \sqrt x  = 4 \Leftrightarrow x = 16\)

Sachbaitap.com

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.