Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 85 trang 90 Sách bài tập (SBT) Toán 8 tập 1

Cho hình bình hành ABCD. Qua C kẻ đường thẳng xy chỉ có một điểm chung C với hình bình hành. Gọi AA’, BB’, DD’ là các đường vuông góc kẻ từ A, B, D đến đường thẳng xy. Chứng ming rằng AA’ = BB’ + DD’.

Cho hình bình hành ABCD. Qua C kẻ đường thẳng xy chỉ có một điểm chung C với hình bình hành. Gọi AA’, BB’, DD’ là các đường vuông góc kẻ từ A, B, D đến đường thẳng xy. Chứng minh rằng AA’ = BB’ + DD’.

Giải:                                                        

Gọi O là giao điểm của hai đường chéo AC và BD.

Kẻ OO’ ⊥ xy

Ta có: BB’ ⊥ xy (gt)

           DD’ ⊥ xy (gt)

Suy ra: BB’ // OO’ // DD’

Tứ giác BB’D’D là hình thang

OB = OD (tính chất hình bình hành)

nên O’B’ = O’D’ do đó OO’ là đường trung bình của hình thang BB’D’D

⇒ OO’\( = {{BB' + {\rm{DD}}'} \over 2}\) (tính chất đường trung bình hình thang) (1)

AA’ ⊥ xy (gt)

OO’ ⊥ xy (theo cách vẽ)

Suy ra: AA’ // OO’

Trong ∆ ACA’ ta có: OA = OC ( tính chất hình bình hành)

OO’ // AA’ nên OO’ là đường trung bình của ∆ ACA’

⇒ OO’ \( = {1 \over 2}\)AA’ (tính chất đường trung bình của tam giác)

⇒ AA’ = 2OO’ (2)

Từ  (1) và (2) suy ra: AA’ = BB’ + DD’.

Sachbaitap.com

Xem lời giải SGK - Toán 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: Bài 7. Hình bình hành