Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 88 trang 90 Sách bài tập (SBT) Toán 8 tập 1

Cho tam giác ABC. Ở phía ngoài tam giác, vẽ các tam giác vuông cân tại A là ABD, ACE. Vẽ hình bình hành ADIE. Chứng minh rằng:

Cho tam giác ABC. Ở phía ngoài tam giác, vẽ các tam giác vuông cân tại A là ABD, ACE. Vẽ hình bình hành ADIE. Chứng minh rằng:

a. IA = BC;                                       b. IA ⊥ BC.

Giải:    

                                                             

a. \(\widehat {BAC} + \widehat {BAD} + \widehat {DAE} + \widehat {EAC} = {360^0}\)

    \(\widehat {BAD} = {90^0},\widehat {EAC} = {90^0}(gt)\)

Suy ra: \(\widehat {BAC} + \widehat {DAE} = {180^0}\) (1)

            AE // DI (gt)

⇒ \(\widehat {ADI} + \widehat {DAE} = {180^0}\) (hai góc trong cùng phía) (2)

Từ (1) và (2) suy ra:  

Xét ∆ ABC và ∆ DAI :

AB = AD (gt)

\(\widehat {BAC} = \widehat {ADI}\) (chứng minh trên)

AC = DI (vì cùng bằng AE)

Do đó: ∆ ABC = ∆ DAI (c.g.c) ⇒ IA = BC

b. ∆ ABC = ∆ DAI ( chứng minh trên) \( \Rightarrow {\widehat A_1} = {\widehat B_1}\)  (3)

Gọi giao điểm IA và BC là H.

Ta có: \({\widehat A_1} + \widehat {BAD} + {\widehat A_2} = {180^0}\) (kề bù)

mà \(\widehat {BAD} = {90^0}(gt) \Rightarrow {\widehat A_1} + {\widehat A_2} = {90^0}\) (4)

Từ (3) và (4) suy ra: \({\widehat B_1} = {\widehat A_2} = {90^0}\)

Trong ∆ AHB ta có: \(\widehat {AHB} + \widehat {{B_1}} + {\widehat A_2} = {180^0}\)

Suy ra \(\widehat {AHB} = {90^0} \Rightarrow AH \bot BC\) hay IA ⊥ BC

Sachbaitap.com

Xem lời giải SGK - Toán 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.

Xem thêm tại đây: Bài 7. Hình bình hành