Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 88 trang 131 Sách bài tập Hình học 11 Nâng cao

Giải bài tập Câu 88 trang 131 Sách bài tập Hình học 11 Nâng cao

Cho hình chóp cụt tam giác đều ABC.A’B’C’ có các cạnh đáy lần lượt là a, b (a>b). Góc giữa đường thẳng chứa đường cao và mặt phẳng chứa mặt bên là α. Tính:

a) Chiều cao, trung đoạn, cạnh bên của hình chóp cụt đó (đoạn thẳng nối trung điểm hai cạnh đáy thuộc một mặt bên gọi trung đoạn của hình chóp cụt đều).

b) Diện tích xung quanh, diện tích toàn phần của hình chóp cụt đó.

Trả lời

 

a) Gọi S là đỉnh của hình chóp đều sinh ra hình chóp cụt đều A’B’C’.ABCD; các điểm H, H’ lần lượt là tâm hai đáy của hình chóp cụt đều; I là trung điểm của BC. Dễ thất \(\widehat {H{\rm{S}}I} = \alpha \), từ đó \(\widehat {SIH} = {90^0} - \alpha  = \beta \).

Ta có \(HH' = I'J = JI.\tan \beta  = JI.\cot \alpha \)

Mà \(JI = {{a\sqrt 3 } \over 6} - {{b\sqrt 3 } \over 6} = {{\sqrt 3 } \over 6}\left( {a - b} \right)\)

Vậy

\(\eqalign{  & HH' = {{\sqrt 3 } \over 6}\left( {a - b} \right)\cot \alpha   \cr  & II' = {{JI} \over {\cos \beta }} = {{JI} \over {\sin \alpha }} = {{\sqrt 3 \left( {a - b} \right)} \over {6\sin \alpha }}  \cr  & CC{'^2} = C'{K^2} + K{C^2}  \cr  &  = {\left( {{{\sqrt 3 \left( {a - b} \right)} \over {6\sin \alpha }}} \right)^2} + {\left( {{{a - b} \over 2}} \right)^2}  \cr  &  \Rightarrow CC' = {{a - b} \over {2\sqrt 3 \sin \alpha }}\sqrt {1 + 3{{\sin }^2}\alpha }  \cr} \)

b)

\(\eqalign{  & {S_{xq}} = 3.{1 \over 2}\left( {B'C' + BC} \right).II'  \cr  &  = {3 \over 2}\left( {a + b} \right){{\sqrt 3 \left( {a - b} \right)} \over {6\sin \alpha }} = {{\sqrt 3 } \over {4\sin \alpha }}\left( {{a^2} - {b^2}} \right)  \cr  & {S_{tp}} = {{\sqrt 3 } \over {4\sin \alpha }}\left( {{a^2} - {b^2}} \right) + {{\sqrt 3 } \over 4}\left( {{a^2} + {b^2}} \right)  \cr  &  = {{\sqrt 3 } \over 4}\left( {{{{a^2} - {b^2}} \over {\sin \alpha }} + {a^2} + {b^2}} \right) \cr} \).

Sachbaitap.com

Xem lời giải SGK - Toán 11 Nâng cao - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.