Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 9 trang 7 Sách bài tập (SBT) Toán 9 tập 2

Hãy biểu diễn y qua x ở mỗi phương trình.

Hãy biểu diễn y qua x ở mỗi phương trình (nếu có thể ) rồi đoán nhận số nghiệm của mỗi hệ phương trình sau đây và giải thích vì sao (không vẽ đồ thị):

\(a)\left\{ \matrix{
4x - {\rm{9y}} = 3 \hfill \cr
- 5x - 3y = 1 \hfill \cr} \right.\)

\(b)\left\{ \matrix{
{2,3x + 0,8y = 5} \cr
{2y = 6}\hfill \cr} \right.\)

\(c)\left\{ \matrix{
{3x = - 5} \cr
{x + 5y = - 4}\hfill \cr} \right.\)

\(d)\left\{ \matrix{
{3x - y = 1} \cr
{6x - 2y = 5} \hfill \cr} \right.\)

Giải

\(a)\left\{ \matrix{
4x - {\rm{9}}y = 3 \hfill \cr
- 5x - 3y = 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = {4 \over {\rm{9}}}y - {1 \over 3} \hfill \cr
y = - {5 \over 3}x - {1 \over 3} \hfill \cr} \right.\)

Hai đường thẳng có hệ số góc \({4 \over 9} \ne  - {5 \over 3}\) nên chúng cắt nhau

Hệ phương trình có một nghiệm duy nhất.

\(b)\left\{ \matrix{
2,3x + 0,{\rm{8}}y = 5 \hfill \cr
2y = {\rm{6}} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = - {{23} \over {\rm{8}}}x + {{25} \over 4} \hfill \cr
y = 3 \hfill \cr} \right.\)

Đường thẳng \(y =  - {{23} \over 8}x + {{25} \over 4}\) cắt hai trục tọa độ

Đường thẳng y = 3 song song với trục hoành nên 2 đường thẳng trên cắt nhau

Hệ phương trình có 1 nghiệm duy nhất

\(c)\left\{ \matrix{
3x = - 5 \hfill \cr
x + 5y = - 4 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = - {5 \over 3} \hfill \cr
y = - {1 \over 5}x - {4 \over 5} \hfill \cr} \right.\)

Đường thẳng \(x =  - {5 \over 3}\) song song với trục tung

Đường thẳng \(y =  - {1 \over 5}x - {4 \over 5}\) cắt hai trục tọa độ nên 2 đường thẳng đó cắt nhau

Hệ phương trình có nghiệm duy nhất

\(d)\left\{ \matrix{
3x - y = 1 \hfill \cr
{\rm{6}}x - 2y = 5 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = 3x - 1 \hfill \cr
y = 3x - {5 \over 2} \hfill \cr} \right.\)

Hai đường thẳng có hệ số góc bằng nhau bằng 3 có tung độ gốc khác nhau: \( - 1 \ne  - {5 \over 2}\) nên chúng song song. Hệ phương trình đã cho vô nghiệm.

Sachbaitap.com

Xem lời giải SGK - Toán 9 - Xem ngay

>> Học trực tuyến lớp 9 & lộ trình Up 10! trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều), theo lộ trình 3: Nền Tảng, Luyện Thi, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả.