Câu 96 trang 151 Sách Bài Tập (SBT) Toán lớp 7 tập 1Chứng minh rằng AI là tia phân giác của góc A. Cho tam giác ABC cân tại A. Các đường trung trực của AB, AC cắt nhau ở I. Chứng minh rằng AI là tia phân giác của góc A. Giải Giả sử IM, IN là hai đường trung trực của AB, AC. Ta có: \(\eqalign{ Từ (1), (2) và (3) suy ra: AM = AN Xét hai tam giác vuông AMI và ANI, ta có: \(\widehat {AMI} = \widehat {ANI} = 90^\circ \) AM = AN (chứng minh trên) AI cạnh huyền chung Suy ra: ∆AMI = ∆ANI (cạnh huyền, cạnh góc vuông) Suy ra \(\widehat {{A_1}} = \widehat {{A_2}}\) (hai góc tương ứng) Vậy AI là tia phân giác của \(\widehat {BAC}\). Sachbaitap.com
Xem lời giải SGK - Toán 7 - Xem ngay >> Học trực tuyến lớp 7 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 8: Các trường hợp bằng nhau của tam giác vuông
|
Chứng minh rằng AI là tia phân giác của góc A.