Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Giải SGK Toán 11 Kết nối tri thức tập 2 trang 71

Giải bài 8.1, 8.2, 8.3, 8.4, 8.5 trang 71 SGK Toán lớp 11 Kết Nối Tri Thức tập 2. Một hộp đựng 15 tấm thẻ cùng loại được đánh số từ 1 đến 15. Rút ngẫu nhiên một tấm thẻ và quan sát số ghi trên thẻ. Gọi A là biến cố “Số ghi trên tấm thẻ nhỏ hơn 7”; B là biến cố “Số ghi trên tấm thẻ là số nguyên tố”.

Bài 8.1 trang 71 SGK Toán 11 - Kết Nối Tri Thức tập 2

Một hộp đựng 15 tấm thẻ cùng loại được đánh số từ 1 đến 15. Rút ngẫu nhiên một tấm thẻ và quan sát số ghi trên thẻ. Gọi A là biến cố “Số ghi trên tấm thẻ nhỏ hơn 7”; B là biến cố “Số ghi trên tấm thẻ là số nguyên tố”.

a) Mô tả không gian mẫu.

b) Mỗi biến cố \(A \cup B\) và AB là tập con nào của không gian mẫu?

Phương pháp:

- Cho A và B là hai biến cố. Biến cố: “A hoặc B xảy ra” được gọi là biến cố hợp của A và B, kí hiệu là \(A \cup B.\)

- Cho A và B là hai biến cố. Biến cố: “Cả A và B đều xảy ra” được gọi là biến cố giao của A và B, kí hiệu AB.

Lời giải:

a) Không gian mẫu: Ω = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15}.

b)

Ta có:

A = {1; 2; 3; 4; 5; 6}.

B = {2; 3; 5; 7; 11; 13}.

Vậy A∪ B = {1; 2; 3; 4; 5; 6; 7; 11; 13} và AB = A ∩ B = {2; 3; 5}.

Bài 8.2 trang 71 SGK Toán 11 - Kết Nối Tri Thức tập 2

Gieo hai con xúc xắc cân đối, đồng chất. Xét các biến cố sau:

E: “Số chấm xuất hiện trên hai con xúc xắc đều là số chẵn”;

F: “Số chấm xuất hiện trên hai con xúc xắc khác tính chẵn lẻ”;

K: “Tích số chấm xuất hiện trên hai con xúc xắc là số chẵn”.

Chứng minh rằng K là biến cố hợp của E và F.

Phương pháp:

Cho A và B là hai biến cố. Biến cố: “A hoặc B xảy ra” được gọi là biến cố hợp của A và B, kí hiệu là \(A \cup B.\)

Lời giải:

Không gian mẫu: Ω = {(x; y) | 1 ≤ x ≤ 6; 1 ≤ y ≤ 6}.

Ta có:

E = {(2; 2); (2; 4); (2; 6); (4; 2); (4; 4); (4; 6); (6; 2); (6; 4); (6; 6)}.

F = {(1; 2); (1; 4); (1; 6); (2; 1); (2; 3); (2; 5); (3; 2); (3; 4); (3; 6); (4; 1); (4; 3); (4; 5); (5; 2); (5; 4); (5; 6); (6; 1); (6; 3); (6; 5)}.

Suy ra: E ∪ F = {(2; 2); (2; 4); (2; 6); (4; 2); (4; 4); (4; 6); (6; 2); (6; 4); (6; 6); (1; 2); (1; 4); (1; 6); (2; 1); (2; 3); (2; 5); (3; 2); (3; 4); (3; 6); (4; 1); (4; 3); (4; 5); (5; 2); (5; 4); (5; 6); (6; 1); (6; 3); (6; 5)}.

Mặt khác:

K = {(2; 2); (2; 4); (2; 6); (4; 2); (4; 4); (4; 6); (6; 2); (6; 4); (6; 6); (1; 2); (1; 4); (1; 6); (2; 1); (2; 3); (2; 5); (3; 2); (3; 4); (3; 6); (4; 1); (4; 3); (4; 5); (5; 2); (5; 4); (5; 6); (6; 1); (6; 3); (6; 5)}

Vậy K = E ∪ F (điều cần phải chứng minh).

Ngoài ra, ta có thể chứng minh như sau:

Nếu E hoặc F xảy ra thì K xảy ra. Ngược lại, nếu K xảy ra thì trong số chấm xuất hiện trên hai con xúc xắc phải có ít nhất một số chẵn: nếu cả hai số đều chẵn thì E xảy ra; nếu một số chẵn, một số lẻ thì F xảy ra. Nghĩa là nếu K xảy ra thì hoặc E xảy ra hoặc F xảy ra. Vậy K là biến cố hợp của E và F.

Bài 8.3 trang 71 SGK Toán 11 - Kết Nối Tri Thức tập 2

Chọn ngẫu nhiên một học sinh trong trường em. Xét hai biến cố sau:

P: “Học sinh đó bị cận thị”;

Q: “Học sinh đó học giỏi môn Toán”.

Nêu nội dung của các biến cố \(P \cup Q;\,\,PQ\) và \(\overline P \overline Q .\)

Phương pháp:

- Cho A và B là hai biến cố. Biến cố: “A hoặc B xảy ra” được gọi là biến cố hợp của A và B, kí hiệu là \(A \cup B.\)

- Cho A và B là hai biến cố. Biến cố: “Cả A và B đều xảy ra” được gọi là biến cố giao của A và B, kí hiệu AB.

Lời giải:

- Biến cố P∪ Q là biến cố “Học sinh đó hoặc bị cận thị hoặc học giỏi môn Toán”.

- Biến cố PQ là biến cố “Học sinh đó vừa bị cận thị vừa học giỏi môn Toán”.

- Biến cố là biến cố “Học sinh đó không bị cận thị”; biến cố là biến cố “Học sinh đó không học giỏi môn Toán”. Vậy biến cố  là biến cố “Học sinh đó vừa không bị cận thị vừa không học giỏi môn Toán”.

Bài 8.4 trang 71 SGK Toán 11 - Kết Nối Tri Thức tập 2

Có hai chuồng nuôi thỏ. Chuồng I có 5 con thỏ đen và 10 con thỏ trắng. Chuồng II có 3 con thỏ trắng và 7 con thỏ đen. Từ mỗi chuồng bắt ngẫu nhiên ra một con thỏ. Xét hai biến cố sau:

A: “Bắt được con thỏ trắng từ chuồng I”;

B: “Bắt được con thỏ đen từ chuồng II”.

Chứng tỏ rằng hai biến cố A và B độc lập.

Phương pháp:

Cặp biến cố A và B được gọi là độc lập nếu việc xảy ra hay không xảy ra của biến cố này không ảnh hưởng tới xác suất xảy ra của biến cố kia.

Lời giải: 

Nếu biến cố A xảy ra, tức là bắt được con thỏ trắng từ chuồng I, vì chuồng II chưa bị bắt thỏ nên trong chuồng II vẫn có 3 con thỏ trắng và 7 con thỏ đen. Vậy P(B) = .

Nếu biến cố A không xảy ra, tức là bắt được con thỏ đen từ chuồng I, vì chuồng II chưa bị bắt thỏ nên trong chuồng II vẫn có 3 con thỏ trắng và 7 con thỏ đen. Vậy P(B) =  .

Như vậy, xác suất của biến cố B không phụ thuộc vào việc xảy ra hay không xảy ra của biến cố A.

Và dù B xảy ra hay không xảy ra, ta cũng luôn có P(A) =  .

Vậy A và B là hai biến cố độc lập.

Bài 8.5 trang 71 SGK Toán 11 - Kết Nối Tri Thức tập 2

Có hai chuồng nuôi gà. Chuồng I có 9 con gà mái và 3 con gà trống. Chuồng II có 3 con gà mái và 6 con gà trống. Bắt ngẫu nhiên một con gà của chuồng I để đem bán rồi dồn các con gà còn lại của chuồng I vào chuồng II. Sau đó bắt ngẫu nhiên một con gà của chuồng II. Xét hai biến cố sau:

E: “Bắt được con gà trống từ chuồng I”;

F: “Bắt được con gà mái từ chuồng II”.

Chứng tỏ rằng hai biến cố E và F không độc lập.

Phương pháp:

Cặp biến cố A và B được gọi là độc lập nếu việc xảy ra hay không xảy ra của biến cố này không ảnh hưởng tới xác suất xảy ra của biến cố kia.

Lời giải:

Nếu biến cố E xảy ra, tức là bắt được con gà trống từ chuồng I, vì sau khi bắt dồn các con gà còn lại của chuồng I vào chuồng II nên trong chuồng II có 12 con gà mái và 8 con gà trống. Vậy P(F) = .

Nếu biến cố E không xảy ra, tức là bắt được con gà mái từ chuồng I, vì sau khi bắt dồn các con gà còn lại của chuồng I vào chuồng II nên trong chuồng II có 11 con gà mái và 9 con gà trống. Vậy P(F) = .

Như vậy, xác suất của biến cố F thay đổi phụ thuộc vào việc xảy ra hay không xảy ra của biến cố E. Vậy E và F không độc lập.

Sachbaitap.com

  • Giải SGK Toán 11 Kết nối tri thức tập 2 trang 75

    Giải SGK Toán 11 Kết nối tri thức tập 2 trang 75

    Giải bài 8.6, 8.7, 8.8, 8.9, 8.10 trang 75 SGK Toán lớp 11 Kết Nối Tri Thức tập 2. Một hộp đựng 8 viên bi màu xanh và 6 viên bi màu đỏ, có cùng kích thước và khối lượng. Bạn Sơn lấy ngẫu nhiên một viên bi từ hộp (lấy xong không trả lại vào hộp). Tiếp đó đến lượt bạn Tùng lấy ngẫu nhiên một viên bi từ hộp đó. Tính xác suất để bạn Tùng lấy được viên bi màu xanh.