Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1 trang 126 Sách bài tập (SBT) Đại số và giải tích 11

Chứng minh rằng

Chứng minh rằng 

a) \({n^5} - n\) chia hết cho 5 với mọi \(n \in N*\) ;

b) Tổng các lập phương của ba số tự nhiên liên tiếp chia hết cho 9 ;

c) \({n^3} - n\) chia hết cho 6 với mọi \(n \in N*\) ;

Giải:

a)      HD: Xem ví dụ 1, .

b)      HD: Đặt \({A_n} = {n^3} + {\left( {n + 1} \right)^3} + {\left( {n + 2} \right)^3}\) dễ thấy \({A_1} \vdots 9\)

Giả sử đã có \({A_1} \vdots 9\) với \(k \ge 1\). Ta phải chứng minh \({A_{k + 1}} \vdots 9\)

Tính \({A_{k + 1}} = {A_k} + 9{k^2} + 27k + 27\)

c)      Làm tương tự như 1.a).

Xem lời giải SGK - Toán 11 - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.