Bài 10 trang 106 Sách bài tập (SBT) Toán Đại số 10Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng Cho a, b, c, d là những số dương; x, y, z là những số thực tùy ý. Chứng minh rằng: \({1 \over a} + {1 \over b} + {1 \over c} \ge {9 \over {a + b + c}}\) Gợi ý làm bài \((a + b + c)({1 \over a} + {1 \over b} + {1 \over c}) = 1 + 1 + 1 + ({a \over b} + {b \over a}) + ({a \over c} + {c \over a}) + ({b \over c} + {c \over b})\) \( \ge 3 + 2 + 2 + 2 = 9 = > {1 \over a} + {1 \over b} + {1 \over c} \ge {9 \over {a + b + c}}\)
Xem lời giải SGK - Toán 10 - Xem ngay >> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 1: Bất đẳng thức
|
Tìm giá trị lớn nhất, nhỏ nhất của hàm số sau trên tập xác định của nó