Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 12 trang 106 Sách bài tập (SBT) Toán Đại số 10

Tìm giá trị lớn nhất của hàm số

Tìm giá trị lớn nhất của hàm số 

\(y = 4{x^3} - {x^4}\) với \(0 \le x \le 4\)

Gợi ý làm bài

\(y = 4{x^3} - {x^4} = {x^3}(4 - x)\)

=> \(3y = x.x.x(12 - 3x) \le {({{x + x} \over 2})^2}{({{x + 12 - 3x} \over 2})^2}\)

\( =  > 48 \le {{\rm{[}}2x(12 - 2x){\rm{]}}^2} \le {({{2x + 12 - 2x} \over 2})^4} = {6^4}\)

\( =  > y \le {{{6^4}} \over {48}} = 27,\forall x \in {\rm{[}}0;4]\)

\(y = 27 \Leftrightarrow \left\{ \matrix{
x = x \hfill \cr
x = 12 - 3x \hfill \cr
2x = 12 - x \hfill \cr
x \in {\rm{[}}0;4] \hfill \cr} \right. \Leftrightarrow x = 3.\)

Vậy giá trị lớn nhất của hàm số đã cho bằng 27 đạt được khi x = 3.

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Xem thêm tại đây: Bài 1: Bất đẳng thức