Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 11 trang 198 Sách bài tập (SBT) Toán Hình học 10

Trong mặt phẳng tọa độ Oxy, cho ba điểm

Trong mặt phẳng tọa độ Oxy, cho ba điểm I(2 ; 4), B(1 ; 1), C(5 ; 5). Tìm điểm A sao cho I là tâm đường tròn nội tiếp tam giác ABC.

Gợi ý làm bài

(Xem hình 3.34)

Ta có : \(IB = \sqrt {{{\left( {1 - 2} \right)}^2} + {{\left( {1 - 4} \right)}^2}}  = \sqrt {10} \)

\(\eqalign{
& IC = \sqrt {{{(5 - 2)}^2} + {{(5 - 4)}^2}} = \sqrt {10} \cr
& IB = IC \Rightarrow AB = AC. \cr} \)

Gọi M là trung điểm của BC, ta có M(3 ; 3).

Phương trình đường thẳng \(IM:x + y - 6 = 0\,\,\,\,\,\,\,\,\,\,(1)\)

Phương trình đường thẳng \(IB:3x - y - 2 = 0\,\,\,\,\,\,\,\,\,(2)\)

Gọi N là điểm đối xứng với M qua đường thẳng IB. Đặt N(x;y), ta có tọa độ trung điểm H của MN là \(\left( {{{x + 3} \over 2};{{y + 3} \over 2}} \right).\)

\(\overrightarrow {MN}  = (x - 3;y - 3)\)

\(\overrightarrow {BI}  = (1;3)\)

Ta có: \(\left\{ \matrix{
\overrightarrow {MN} .\overrightarrow {BI} = 0 \hfill \cr
H \in IB \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
x - 3 + 3(y - 3) = 0 \hfill \cr
3\left( {{{x + 3} \over 2}} \right) - \left( {{{y + 3} \over 2}} \right) - 2 = 0 \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
x + 3y - 12 = 0 \hfill \cr
3x - y + 2 = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = {3 \over 5} \hfill \cr
y = {{19} \over 5}. \hfill \cr} \right.\)

Vậy \(N\left( {{3 \over 5};{{19} \over 5}} \right).\)

Ta có B(1 ; 1). Phương trình đường thẳng BN: 7x + y - 8 = 0.

Điểm A là giao của hai đường thẳng BN và IM nên tọa độ của A là nghiệm của hệ phương trình

\( \Leftrightarrow \left\{ \matrix{
7x + y - 8 = 0 \hfill \cr
x + y - 6 = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = {1 \over 3} \hfill \cr
y = {{17} \over 3} \hfill \cr} \right.\)

Vậy tọa độ điểm A là \(\left( {{1 \over 3};{{17} \over 3}} \right).\)

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Xem thêm tại đây: I-Đề toán tổng hợp