Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 13 trang 198 Sách bài tập (SBT) Toán Hình học 10

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C)

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) : \((x - 1) + {(y - 2)^2} = 4\) và hai điểm A(1 ; 4),     . Viết phương trình đường thẳng d đi qua B cắt đường tròn (C) tại M, N sao cho AMN có diện tích lớn nhất.

Gợi ý làm bài

(Xem hình 3.36)

Đường tròn (C) có tâm I(1 ; 2) và có bán kính R = 2.

Ta có \({x_A} = {x_1} = {x_B} = 1\)

Suy ra A, I, B cùng thuộc đường thẳng có phương trình x = 1.

Ta có: \(IA = \sqrt {{{\left( {1 - 1} \right)}^2} + {{\left( {4 - 2} \right)}^2}}  = 2 = R\)

\(IB = \sqrt {{{\left( {1 - 1} \right)}^2} + {{\left( {{1 \over 2} - 2} \right)}^2}}  = {3 \over 2} < R.\)

Suy ra điểm A nằm trên đường tròn và điểm B nằm trong hình tròn.

Gọi H và K là hình chiếu của I và A xuống đường thẳng d.

Ta có:

\({{{S_{AMN}}} \over {{S_{IMN}}}} = {{AK} \over {IH}} = {{AB} \over {IB}} = {{{7 \over 2}} \over {{3 \over 2}}} = {7 \over 3}.\)

Suy ra \({S_{AMN}} = {7 \over 3}{S_{IMN}}\)

\( = {7 \over 3}.{1 \over 2}.I{\rm{I}}\sin MIN\)

\( = {{14} \over 3}\sin MIN \le {{14} \over 3}.\)

\({S_{AMN}}\) lớn nhất \( \Leftrightarrow \sin MIN = 1 \Leftrightarrow \widehat {MIN} = {90^ \circ }\)

\(\Leftrightarrow IH = {{R\sqrt 2 } \over 2} \Leftrightarrow d(I,MN) = \sqrt 2 \)

Phương trình đường thẳng MN là : 

\(y - {1 \over 2} = k(x - 1) \Leftrightarrow 2kx - 2y + (1 - 2k) = 0.\)

Ta có:

\(\eqalign{
& d(I,MN) = \sqrt 2 \cr
& \Leftrightarrow {{\left| {2k - 4 + 1 - 2k} \right|} \over {\sqrt {4{k^2} + 4} }} = \sqrt 2 \cr} \)

\( \Leftrightarrow 3 = \sqrt {8({k^2} + 1)}  \Leftrightarrow k =  \pm {{\sqrt 2 } \over 4}.\)

Vậy phương trình đường thẳng d là : \(y =  \pm {{\sqrt 2 } \over 4}\left( {x - 1} \right) + {1 \over 2}\).

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Xem thêm tại đây: I-Đề toán tổng hợp