Bài 1.10 trang 20 sách bài tập (SBT) – Hình học 12Cho khối chóp tam giác đều S.ABC có đáy là tam giác đều cạnh bằng a, các cạnh bên tạo với đáy một góc 600. Hãy tính thể tích của khối chóp đó. Cho khối chóp tam giác đều S.ABC có đáy là tam giác đều cạnh bằng a, các cạnh bên tạo với đáy một góc 600. Hãy tính thể tích của khối chóp đó. Hướng dẫn làm bài: Kẻ \(SH \bot (ABC)\) . Đường thẳng AH cắt BC tại I. Do S.ABC là hình chóp tam giác đều nên H là trọng tâm của \(\Delta ABC\) . Do đó \(AI = {{\sqrt 3 } \over 2}a,AH = {2 \over 3}.{{\sqrt 3 } \over 2}a = {{\sqrt 3 } \over 3}a,\widehat {SAH} = {60^0}\) \(SH = AH.\tan {60^0} = {{\sqrt 3 } \over 3}a.\sqrt 3 = a\) Thể tích khối chóp S.ABC là: \(V = {1 \over 3}.{1 \over 2}.{{\sqrt 3 } \over 2}a.a.a = {{\sqrt 3 } \over {12}}{a^3}\) Sachbaitap.com
Xem lời giải SGK - Toán 12 - Xem ngay >> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Xem thêm tại đây:
Bài 3. Khái niệm về thể tích khối đa diện
|
Cho khối chóp S.ABC có đáy là tam giác cân, AB = AC = 5a, BC = 6a và các mặt bên tạo với đáy một góc 600.Hãy tính thể tích của khối chóp đó.
Cho hình chóp tam giác S.ABC có đáy là tam giác vuông ở B. Cạnh SA vuông góc với đáy. Từ A kẻ các đoạn thẳng AD vuông góc với SB và AE vuông góc với SC. Biết rằng AB = a, BC = b, SA = c.
Chứng minh rằng tổng các khoảng cách từ một điểm bất kì trong một tứ diện đều đến các mặt phẳng của nó là một số không đổi.
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = a, BC = 2a, AA’ = a. Lấy điểm M trên cạnh AD sao cho AM = 3MD.