Bài 1.21 trang 30 Sách bài tập (SBT) Hình học 11Chứng minh rằng mỗi phép quay đều có thể xem là kết quả của việc thực hiện liên tiếp hai phép đối xứng trục. Chứng minh rằng mỗi phép quay đều có thể xem là kết quả của việc thực hiện liên tiếp hai phép đối xứng trục. Giải:
Gọi \({Q_{\left( {I,\alpha } \right)}}\) là phép quay tâm I góc \(\alpha \) . Lấy đường thẳng d bất kì qua I. Gọi d' là ảnh của d qua phép quay tâm I góc \({\alpha \over 2}\). Lấy điểm M bất kì và gọi \(M' = {Q_{\left( {I,\alpha } \right)}}\left( M \right)\). Gọi M" là ảnh của M qua phép đối xứng qua trục d. \(M_1\) là ảnh của M" qua phép đối xứng qua trục d'. Gọi J là giao của MM" với d, H là giao của \(M''{M_1}\) với d'. Khi đó ta có đẳng thức giữa các góc lượng giác sau: \(\eqalign{ Từ đó suy ra \(M' \equiv {M_1}\). Như vậy M' có thể xem là ảnh của sau khi thực hiện liên tiếp hai phép đối xứng qua hai trục d và d'.
Xem lời giải SGK - Toán 11 - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 6. Khái niệm về phép dời hình và hai hình bằng nhau
|
Cho hình vuông ABCD có tâm I. Trên tia BC lấy điểm E sao cho BE = AI.
Hãy viết phương trình của đường thẳng d1 là ảnh của d qua phép vị tự tâm O tỉ số k = 3
Trong mặt phẳng tọa độ Oxy cho đường tròn (C) có phương trình
Cho nửa đường tròn đường kính AB. Hãy dựng hình vuông có hai đỉnh nằm trên nửa đường tròn, hai đỉnh còn lại nằm trên đường kính AB của nửa đường tròn đó.