Bài 1.23 trang 35 Sách bài tập (SBT) Hình học 11Hãy viết phương trình của đường thẳng d1 là ảnh của d qua phép vị tự tâm O tỉ số k = 3 Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình \(2x + y - 4 = 0\). a) Hãy viết phương trình của đường thẳng d1 là ảnh của d qua phép vị tự tâm O tỉ số k = 3 b) Hãy viết phương trình của đường thẳng d2 là ảnh của d qua phép vị tự tâm I(-1; 2) tỉ số k = -2 Giải: a) Lấy hai điểm \(A\left( {0;4} \right)\) và \(B\left( {2;0} \right)\) thuộc d. Gọi \(A',B'\) theo thứ tự là ảnh của A và B qua phép vị tự tâm O tỉ số k = 3. Khi đó ta có \(\overrightarrow {OA'} = 3\overrightarrow {OA} ,\overrightarrow {OB'} = 3\overrightarrow {OB} \). Vì \(\overrightarrow {OA} = \left( {0;4} \right)\) nên \(\overrightarrow {OA'} = \left( {0;12} \right)\). Do đó \(A' = \left( {0;12} \right)\). Tương tự \(B' = \left( {6;0} \right)\); \(d_1\) chính là đường thẳng A'B' nên nó có phương trình \({{x - 6} \over { - 6}} = {y \over {12}}\) hay \(2{\rm{x}} + y - 12 = 0\). b) Có thể giải tương tự như câu a) . Sau đây ta sẽ giải bằng cách khác. Vì \({d_2}\parallel d\) nên phương trình của \(d_2\) có dạng \(2{\rm{x}} + y + C = 0\): . Gọi \(A' = \left( {x';y'} \right)\) là ảnh của A qua phép vị tự đó thì ta có: \(\overrightarrow {IA'} = - 2\overrightarrow {IA} \) hay \(x' + 1 = - 2,y' - 2 = - 4\) Suy ra \(x' = - 3,y' = - 2\) Do A' thuộc \(d_2\) nên \(2.\left( { - 3} \right) - 2 + C = 0\). Từ đó suy ra C = 8 Phương trình của \(d_2\) là \(2{\rm{x}} + y + 8 = 0\)
Xem lời giải SGK - Toán 11 - Xem ngay >> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Bài 7. Phép vị tự
|
Trong mặt phẳng tọa độ Oxy cho đường tròn (C) có phương trình
Cho nửa đường tròn đường kính AB. Hãy dựng hình vuông có hai đỉnh nằm trên nửa đường tròn, hai đỉnh còn lại nằm trên đường kính AB của nửa đường tròn đó.
Cho góc nhọn xOy và điểm C nằm trong góc đó. Tìm trên Oy điểm A sao cho khoảng cách từ A đến Ox bằng AC.
Cho hình thang ABCD có AB song song với CD, AD = a, DC = b còn hai đỉnh A, B cố định. Gọi I là giao điểm của hai đường chéo.