Bài 15 trang 190 Sách bài tập (SBT) Toán Đại số 10biểu thức đó không thể là một số âm. Chứng minh rằng với mọi \(\alpha \) làm cho biểu thức \({{\sin \alpha + \tan \alpha } \over {{\rm{cos}}\alpha {\rm{ + cot}}\alpha }}\) có nghĩa, biểu thức đó không thể là một số âm. Gợi ý làm bài Ta có: \(\eqalign{ Vì \(1 + c{\rm{os}}\alpha \ge {\rm{0}}\) và \(1 + \sin \alpha \ge {\rm{0}}\) cho nên biểu thức đã cho không thể có giá trị là một số âm. Sachbaitap.net
Xem lời giải SGK - Toán 10 - Xem ngay >> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
Xem thêm tại đây:
Bài 2: Giá trị lượng giác của một cung
|
Chứng minh rằng các biểu thức sau là những hằng số không phụ thuộc