Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.52 trang 45 Sách bài tập (SBT) Toán Hình học 10

Cho lục giác đều ABCDEF và M là một điểm tùy ý. Chứng minh rằng:

Cho lục giác đều ABCDEF và M là một điểm tùy ý. Chứng minh rằng:

\(\overrightarrow {MA}  + \overrightarrow {MC}  + \overrightarrow {ME}  = \overrightarrow {MB}  + \overrightarrow {MD}  + \overrightarrow {MF} \)

Gợi ý làm bài

(h.1.65)

Gọi O là tâm lục giác đều. Khi đó O là trọng tâm của các tam giác đều ACE và BDF.

Do đó, với mọi điểm M ta có:

\(\overrightarrow {MA}  + \overrightarrow {MC}  + \overrightarrow {ME}  = 3\overrightarrow {MO} \)

\(\overrightarrow {MB}  + \overrightarrow {MD}  + \overrightarrow {MF}  = 3\overrightarrow {MO} \)

Vậy ta có đẳng thức cần chứng minh. 

Sachbaitap.net

Xem lời giải SGK - Toán 10 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Click để xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.