Bài 1.54 trang 45 Sách bài tập (SBT) Toán Hình học 10Cho tam giác ABC có trung tuyến AM. Trên cạnh AC lấy hai điểm E và F sao cho Cho tam giác ABC có trung tuyến AM. Trên cạnh AC lấy hai điểm E và F sao cho AE = EF = FC. BE cắt trung tuyến AM tại N. Tính \(\overrightarrow {AE} + \overrightarrow {AF} + \overrightarrow {AN} + \overrightarrow {MN} \) Gợi ý làm bài (h.1.67) Ta có \(\overrightarrow {AE} = \overrightarrow {FC} \) Vì MF // BE nên N là trung điểm của AM, suy ra \(\overrightarrow {AN} + \overrightarrow {MN} = \overrightarrow 0 \) Do đó \(\overrightarrow {AE} + \overrightarrow {AF} + \overrightarrow {AN} + \overrightarrow {MN} = \overrightarrow {AF} + \overrightarrow {FC} = \overrightarrow {AC}\) Sachbaitap.net
Xem lời giải SGK - Toán 10 - Xem ngay >> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, hoàn trả học phí nếu học không hiệu quả.
Xem thêm tại đây:
Ôn tập chương I - Vectơ - SBT Toán 10
|
Cho hai điểm A và B. Điểm M thỏa mãn điều kiện
Cho tam giác ABC. Gọi M, N , P là những điểm được xác định như sau